The noisy Pais–Uhlenbeck oscillator

In this paper, we include simultaneously additive and multiplicative noise to the Pais–Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we add noise to the corresponding frequencies. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2019-05, Vol.57 (5), p.1314-1329
Hauptverfasser: Urenda-Cázares, E., Espinoza, P. B., Gallegos, A., Jaimes-Reátegui, R., Macías-Díaz, J. E., Vargas-Rodríguez, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 5
container_start_page 1314
container_title Journal of mathematical chemistry
container_volume 57
creator Urenda-Cázares, E.
Espinoza, P. B.
Gallegos, A.
Jaimes-Reátegui, R.
Macías-Díaz, J. E.
Vargas-Rodríguez, H.
description In this paper, we include simultaneously additive and multiplicative noise to the Pais–Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we add noise to the corresponding frequencies. The systems are solved with the fourth-order stochastic Runge–Kutta method. Some graphics of the solutions and integrals of motion are presented, and the average deviations are calculated in order to quantify the noise influence.
doi_str_mv 10.1007/s10910-018-0966-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224405162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224405162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-17ccaa7c7a642c11d073ebe81a7315f8b3e92794b2047dec98982cfc3c1cd3e03</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EEqXwAGyVEKPhXjvxz4gqKEiVYGhny7l1aEpIip0O3XgH3pAnIVWQmJjucs53pcPYJcINAujbhGAROKDhYJXi6oiNMNeCG2P1MRuByC232uIpO0tpAwDWKDNi14t1mDRtlfaTF1-l78-v5boOTRHobdImqurad208Zyelr1O4-L1jtny4X0wf-fx59jS9m3OSqDqOmsh7TdqrTBDiCrQMRTDotcS8NIUMVmibFQIyvQpkjTWCSpKEtJIB5JhdDbvb2H7sQurcpt3Fpn_phBBZBjkq0VM4UBTblGIo3TZW7z7uHYI71HBDDdfXcIcaTvWOGJzUs81riH_L_0s__SphqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224405162</pqid></control><display><type>article</type><title>The noisy Pais–Uhlenbeck oscillator</title><source>SpringerLink Journals</source><creator>Urenda-Cázares, E. ; Espinoza, P. B. ; Gallegos, A. ; Jaimes-Reátegui, R. ; Macías-Díaz, J. E. ; Vargas-Rodríguez, H.</creator><creatorcontrib>Urenda-Cázares, E. ; Espinoza, P. B. ; Gallegos, A. ; Jaimes-Reátegui, R. ; Macías-Díaz, J. E. ; Vargas-Rodríguez, H.</creatorcontrib><description>In this paper, we include simultaneously additive and multiplicative noise to the Pais–Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we add noise to the corresponding frequencies. The systems are solved with the fourth-order stochastic Runge–Kutta method. Some graphics of the solutions and integrals of motion are presented, and the average deviations are calculated in order to quantify the noise influence.</description><identifier>ISSN: 0259-9791</identifier><identifier>EISSN: 1572-8897</identifier><identifier>DOI: 10.1007/s10910-018-0966-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Harmonic oscillators ; Integrals ; Math. Applications in Chemistry ; Mathematical analysis ; Noise ; Original Paper ; Physical Chemistry ; Runge-Kutta method ; Theoretical and Computational Chemistry ; Time dependence</subject><ispartof>Journal of mathematical chemistry, 2019-05, Vol.57 (5), p.1314-1329</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-17ccaa7c7a642c11d073ebe81a7315f8b3e92794b2047dec98982cfc3c1cd3e03</citedby><cites>FETCH-LOGICAL-c316t-17ccaa7c7a642c11d073ebe81a7315f8b3e92794b2047dec98982cfc3c1cd3e03</cites><orcidid>0000-0002-1824-2070</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10910-018-0966-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10910-018-0966-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Urenda-Cázares, E.</creatorcontrib><creatorcontrib>Espinoza, P. B.</creatorcontrib><creatorcontrib>Gallegos, A.</creatorcontrib><creatorcontrib>Jaimes-Reátegui, R.</creatorcontrib><creatorcontrib>Macías-Díaz, J. E.</creatorcontrib><creatorcontrib>Vargas-Rodríguez, H.</creatorcontrib><title>The noisy Pais–Uhlenbeck oscillator</title><title>Journal of mathematical chemistry</title><addtitle>J Math Chem</addtitle><description>In this paper, we include simultaneously additive and multiplicative noise to the Pais–Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we add noise to the corresponding frequencies. The systems are solved with the fourth-order stochastic Runge–Kutta method. Some graphics of the solutions and integrals of motion are presented, and the average deviations are calculated in order to quantify the noise influence.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Harmonic oscillators</subject><subject>Integrals</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Runge-Kutta method</subject><subject>Theoretical and Computational Chemistry</subject><subject>Time dependence</subject><issn>0259-9791</issn><issn>1572-8897</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAURi0EEqXwAGyVEKPhXjvxz4gqKEiVYGhny7l1aEpIip0O3XgH3pAnIVWQmJjucs53pcPYJcINAujbhGAROKDhYJXi6oiNMNeCG2P1MRuByC232uIpO0tpAwDWKDNi14t1mDRtlfaTF1-l78-v5boOTRHobdImqurad208Zyelr1O4-L1jtny4X0wf-fx59jS9m3OSqDqOmsh7TdqrTBDiCrQMRTDotcS8NIUMVmibFQIyvQpkjTWCSpKEtJIB5JhdDbvb2H7sQurcpt3Fpn_phBBZBjkq0VM4UBTblGIo3TZW7z7uHYI71HBDDdfXcIcaTvWOGJzUs81riH_L_0s__SphqA</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Urenda-Cázares, E.</creator><creator>Espinoza, P. B.</creator><creator>Gallegos, A.</creator><creator>Jaimes-Reátegui, R.</creator><creator>Macías-Díaz, J. E.</creator><creator>Vargas-Rodríguez, H.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1824-2070</orcidid></search><sort><creationdate>20190515</creationdate><title>The noisy Pais–Uhlenbeck oscillator</title><author>Urenda-Cázares, E. ; Espinoza, P. B. ; Gallegos, A. ; Jaimes-Reátegui, R. ; Macías-Díaz, J. E. ; Vargas-Rodríguez, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-17ccaa7c7a642c11d073ebe81a7315f8b3e92794b2047dec98982cfc3c1cd3e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Harmonic oscillators</topic><topic>Integrals</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Runge-Kutta method</topic><topic>Theoretical and Computational Chemistry</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urenda-Cázares, E.</creatorcontrib><creatorcontrib>Espinoza, P. B.</creatorcontrib><creatorcontrib>Gallegos, A.</creatorcontrib><creatorcontrib>Jaimes-Reátegui, R.</creatorcontrib><creatorcontrib>Macías-Díaz, J. E.</creatorcontrib><creatorcontrib>Vargas-Rodríguez, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urenda-Cázares, E.</au><au>Espinoza, P. B.</au><au>Gallegos, A.</au><au>Jaimes-Reátegui, R.</au><au>Macías-Díaz, J. E.</au><au>Vargas-Rodríguez, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The noisy Pais–Uhlenbeck oscillator</atitle><jtitle>Journal of mathematical chemistry</jtitle><stitle>J Math Chem</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>57</volume><issue>5</issue><spage>1314</spage><epage>1329</epage><pages>1314-1329</pages><issn>0259-9791</issn><eissn>1572-8897</eissn><abstract>In this paper, we include simultaneously additive and multiplicative noise to the Pais–Uhlenbeck oscillator (PUO). We construct an integral of motion of the PUO with a time-dependent coefficient. Viewing the PUO as two coupled harmonic oscillators, we add noise to the corresponding frequencies. The systems are solved with the fourth-order stochastic Runge–Kutta method. Some graphics of the solutions and integrals of motion are presented, and the average deviations are calculated in order to quantify the noise influence.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10910-018-0966-6</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1824-2070</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0259-9791
ispartof Journal of mathematical chemistry, 2019-05, Vol.57 (5), p.1314-1329
issn 0259-9791
1572-8897
language eng
recordid cdi_proquest_journals_2224405162
source SpringerLink Journals
subjects Chemistry
Chemistry and Materials Science
Harmonic oscillators
Integrals
Math. Applications in Chemistry
Mathematical analysis
Noise
Original Paper
Physical Chemistry
Runge-Kutta method
Theoretical and Computational Chemistry
Time dependence
title The noisy Pais–Uhlenbeck oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A12%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20noisy%20Pais%E2%80%93Uhlenbeck%20oscillator&rft.jtitle=Journal%20of%20mathematical%20chemistry&rft.au=Urenda-C%C3%A1zares,%20E.&rft.date=2019-05-15&rft.volume=57&rft.issue=5&rft.spage=1314&rft.epage=1329&rft.pages=1314-1329&rft.issn=0259-9791&rft.eissn=1572-8897&rft_id=info:doi/10.1007/s10910-018-0966-6&rft_dat=%3Cproquest_cross%3E2224405162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224405162&rft_id=info:pmid/&rfr_iscdi=true