Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition
Source localization and radio cartography using multi-way representation of spectrum is the subject of study in this paper. A joint matrix factorization and tensor decomposition problem is proposed and solved using an iterative algorithm. The multi-way measured spectrum is organized in a tensor and...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-05 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Joneidi, Mohsen Rahnavard, Nazanin |
description | Source localization and radio cartography using multi-way representation of spectrum is the subject of study in this paper. A joint matrix factorization and tensor decomposition problem is proposed and solved using an iterative algorithm. The multi-way measured spectrum is organized in a tensor and it is modeled by multiplication of a propagation tensor and a channel gain matrix. The tensor indicates the propagating power from each location and each frequency over time and the channel matrix links the propagating tensor to the sensed spectrum. We utilize sparsity and other intrinsic characteristics of spectrum to identify the solution of the proposed problem. Moreover, The online implementation of the proposed framework results in online radio cartography which is a powerful tool for efficient spectrum awareness and utilization. The simulation results show that our algorithm is a promising technique for dynamic primary user localization and online radio cartography. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224150317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224150317</sourcerecordid><originalsourceid>FETCH-proquest_journals_22241503173</originalsourceid><addsrcrecordid>eNqNjMsKwjAQAIMgWLT_sOC50CbWeveBB0HRevEiSxs1pWbrJhXq16vgB3iawwzTE4FUKolmEykHInSuiuNYTjOZpioQpx2bO3IHR6cZNlRgbV7oDVlAW8LW1sZq2GNpCObInq6Mza2Dp0E4eG4L37IuIdfWEcNCF3RvyJnvYCT6F6ydDn8civFqmc_XUcP0aLXz54path91llJOkjRWSab-q95ia0MZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224150317</pqid></control><display><type>article</type><title>Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition</title><source>Free E- Journals</source><creator>Joneidi, Mohsen ; Rahnavard, Nazanin</creator><creatorcontrib>Joneidi, Mohsen ; Rahnavard, Nazanin</creatorcontrib><description>Source localization and radio cartography using multi-way representation of spectrum is the subject of study in this paper. A joint matrix factorization and tensor decomposition problem is proposed and solved using an iterative algorithm. The multi-way measured spectrum is organized in a tensor and it is modeled by multiplication of a propagation tensor and a channel gain matrix. The tensor indicates the propagating power from each location and each frequency over time and the channel matrix links the propagating tensor to the sensed spectrum. We utilize sparsity and other intrinsic characteristics of spectrum to identify the solution of the proposed problem. Moreover, The online implementation of the proposed framework results in online radio cartography which is a powerful tool for efficient spectrum awareness and utilization. The simulation results show that our algorithm is a promising technique for dynamic primary user localization and online radio cartography.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cartography ; Computer simulation ; Decomposition ; Iterative algorithms ; Iterative methods ; Localization ; Mathematical analysis ; Multiplication ; Radio ; Tensors</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Joneidi, Mohsen</creatorcontrib><creatorcontrib>Rahnavard, Nazanin</creatorcontrib><title>Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition</title><title>arXiv.org</title><description>Source localization and radio cartography using multi-way representation of spectrum is the subject of study in this paper. A joint matrix factorization and tensor decomposition problem is proposed and solved using an iterative algorithm. The multi-way measured spectrum is organized in a tensor and it is modeled by multiplication of a propagation tensor and a channel gain matrix. The tensor indicates the propagating power from each location and each frequency over time and the channel matrix links the propagating tensor to the sensed spectrum. We utilize sparsity and other intrinsic characteristics of spectrum to identify the solution of the proposed problem. Moreover, The online implementation of the proposed framework results in online radio cartography which is a powerful tool for efficient spectrum awareness and utilization. The simulation results show that our algorithm is a promising technique for dynamic primary user localization and online radio cartography.</description><subject>Cartography</subject><subject>Computer simulation</subject><subject>Decomposition</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Localization</subject><subject>Mathematical analysis</subject><subject>Multiplication</subject><subject>Radio</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQAIMgWLT_sOC50CbWeveBB0HRevEiSxs1pWbrJhXq16vgB3iawwzTE4FUKolmEykHInSuiuNYTjOZpioQpx2bO3IHR6cZNlRgbV7oDVlAW8LW1sZq2GNpCObInq6Mza2Dp0E4eG4L37IuIdfWEcNCF3RvyJnvYCT6F6ydDn8civFqmc_XUcP0aLXz54path91llJOkjRWSab-q95ia0MZ</recordid><startdate>20190510</startdate><enddate>20190510</enddate><creator>Joneidi, Mohsen</creator><creator>Rahnavard, Nazanin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190510</creationdate><title>Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition</title><author>Joneidi, Mohsen ; Rahnavard, Nazanin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22241503173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cartography</topic><topic>Computer simulation</topic><topic>Decomposition</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Localization</topic><topic>Mathematical analysis</topic><topic>Multiplication</topic><topic>Radio</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Joneidi, Mohsen</creatorcontrib><creatorcontrib>Rahnavard, Nazanin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joneidi, Mohsen</au><au>Rahnavard, Nazanin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition</atitle><jtitle>arXiv.org</jtitle><date>2019-05-10</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Source localization and radio cartography using multi-way representation of spectrum is the subject of study in this paper. A joint matrix factorization and tensor decomposition problem is proposed and solved using an iterative algorithm. The multi-way measured spectrum is organized in a tensor and it is modeled by multiplication of a propagation tensor and a channel gain matrix. The tensor indicates the propagating power from each location and each frequency over time and the channel matrix links the propagating tensor to the sensed spectrum. We utilize sparsity and other intrinsic characteristics of spectrum to identify the solution of the proposed problem. Moreover, The online implementation of the proposed framework results in online radio cartography which is a powerful tool for efficient spectrum awareness and utilization. The simulation results show that our algorithm is a promising technique for dynamic primary user localization and online radio cartography.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2224150317 |
source | Free E- Journals |
subjects | Cartography Computer simulation Decomposition Iterative algorithms Iterative methods Localization Mathematical analysis Multiplication Radio Tensors |
title | Primary User Localization and Online Radio Cartography via Structured Tensor Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A12%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Primary%20User%20Localization%20and%20Online%20Radio%20Cartography%20via%20Structured%20Tensor%20Decomposition&rft.jtitle=arXiv.org&rft.au=Joneidi,%20Mohsen&rft.date=2019-05-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2224150317%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224150317&rft_id=info:pmid/&rfr_iscdi=true |