Laser shock punching: principle and influencing factors

Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Production engineering (Berlin, Germany) Germany), 2019-06, Vol.13 (3-4), p.399-407
Hauptverfasser: Fenske, H., Vollertsen, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 407
container_issue 3-4
container_start_page 399
container_title Production engineering (Berlin, Germany)
container_volume 13
creator Fenske, H.
Vollertsen, F.
description Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.
doi_str_mv 10.1007/s11740-019-00886-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222953840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222953840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJJn-9SVErFLzoOWTTpF2tu2vSPfjt3bqCN-cyMLz3hvcj5JLBNQPQN4UxLYACsxTAGEXxhMyYUUg1SjwlM7BCUCW5OCeLUpoaQFpgqMSM6LUvMVdl14X3qh_asGva7W3V56YNTb-PlW83VdOm_RDHQ7utkg-HLpcLcpb8vsTF756T14f7l-WKrp8fn5Z3axpQ4YEqr4yElKI2IakasOZJeSm0sUHKUEdMJsUEHGJkXHBZYy3Bgsbo_cZqnJOrKbfP3ecQy8G9dUNux5eOj2MlGgGjik-qkLtSckxuLPDh85dj4I6M3MTIjYzcDyOHowknUzm23cb8F_2P6xvd92j3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222953840</pqid></control><display><type>article</type><title>Laser shock punching: principle and influencing factors</title><source>SpringerNature Journals</source><creator>Fenske, H. ; Vollertsen, F.</creator><creatorcontrib>Fenske, H. ; Vollertsen, F.</creatorcontrib><description>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</description><identifier>ISSN: 0944-6524</identifier><identifier>EISSN: 1863-7353</identifier><identifier>DOI: 10.1007/s11740-019-00886-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon dioxide ; Carbon dioxide lasers ; Cutting force ; Engineering ; Foils ; Grain size ; Industrial and Production Engineering ; Laser shock processing ; Lasers ; Production ; Production Process ; Punching ; Shearing ; Shock waves ; Size effects ; Thickness</subject><ispartof>Production engineering (Berlin, Germany), 2019-06, Vol.13 (3-4), p.399-407</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</citedby><cites>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</cites><orcidid>0000-0002-8689-1267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11740-019-00886-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11740-019-00886-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fenske, H.</creatorcontrib><creatorcontrib>Vollertsen, F.</creatorcontrib><title>Laser shock punching: principle and influencing factors</title><title>Production engineering (Berlin, Germany)</title><addtitle>Prod. Eng. Res. Devel</addtitle><description>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Cutting force</subject><subject>Engineering</subject><subject>Foils</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Production</subject><subject>Production Process</subject><subject>Punching</subject><subject>Shearing</subject><subject>Shock waves</subject><subject>Size effects</subject><subject>Thickness</subject><issn>0944-6524</issn><issn>1863-7353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJJn-9SVErFLzoOWTTpF2tu2vSPfjt3bqCN-cyMLz3hvcj5JLBNQPQN4UxLYACsxTAGEXxhMyYUUg1SjwlM7BCUCW5OCeLUpoaQFpgqMSM6LUvMVdl14X3qh_asGva7W3V56YNTb-PlW83VdOm_RDHQ7utkg-HLpcLcpb8vsTF756T14f7l-WKrp8fn5Z3axpQ4YEqr4yElKI2IakasOZJeSm0sUHKUEdMJsUEHGJkXHBZYy3Bgsbo_cZqnJOrKbfP3ecQy8G9dUNux5eOj2MlGgGjik-qkLtSckxuLPDh85dj4I6M3MTIjYzcDyOHowknUzm23cb8F_2P6xvd92j3</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fenske, H.</creator><creator>Vollertsen, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8689-1267</orcidid></search><sort><creationdate>20190601</creationdate><title>Laser shock punching: principle and influencing factors</title><author>Fenske, H. ; Vollertsen, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Cutting force</topic><topic>Engineering</topic><topic>Foils</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Production</topic><topic>Production Process</topic><topic>Punching</topic><topic>Shearing</topic><topic>Shock waves</topic><topic>Size effects</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenske, H.</creatorcontrib><creatorcontrib>Vollertsen, F.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Production engineering (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenske, H.</au><au>Vollertsen, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser shock punching: principle and influencing factors</atitle><jtitle>Production engineering (Berlin, Germany)</jtitle><stitle>Prod. Eng. Res. Devel</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>13</volume><issue>3-4</issue><spage>399</spage><epage>407</epage><pages>399-407</pages><issn>0944-6524</issn><eissn>1863-7353</eissn><abstract>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11740-019-00886-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8689-1267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0944-6524
ispartof Production engineering (Berlin, Germany), 2019-06, Vol.13 (3-4), p.399-407
issn 0944-6524
1863-7353
language eng
recordid cdi_proquest_journals_2222953840
source SpringerNature Journals
subjects Carbon dioxide
Carbon dioxide lasers
Cutting force
Engineering
Foils
Grain size
Industrial and Production Engineering
Laser shock processing
Lasers
Production
Production Process
Punching
Shearing
Shock waves
Size effects
Thickness
title Laser shock punching: principle and influencing factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20shock%20punching:%20principle%20and%20influencing%20factors&rft.jtitle=Production%20engineering%20(Berlin,%20Germany)&rft.au=Fenske,%20H.&rft.date=2019-06-01&rft.volume=13&rft.issue=3-4&rft.spage=399&rft.epage=407&rft.pages=399-407&rft.issn=0944-6524&rft.eissn=1863-7353&rft_id=info:doi/10.1007/s11740-019-00886-3&rft_dat=%3Cproquest_cross%3E2222953840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222953840&rft_id=info:pmid/&rfr_iscdi=true