Laser shock punching: principle and influencing factors
Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO 2 laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By usin...
Gespeichert in:
Veröffentlicht in: | Production engineering (Berlin, Germany) Germany), 2019-06, Vol.13 (3-4), p.399-407 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 407 |
---|---|
container_issue | 3-4 |
container_start_page | 399 |
container_title | Production engineering (Berlin, Germany) |
container_volume | 13 |
creator | Fenske, H. Vollertsen, F. |
description | Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO
2
laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated. |
doi_str_mv | 10.1007/s11740-019-00886-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222953840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222953840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJJn-9SVErFLzoOWTTpF2tu2vSPfjt3bqCN-cyMLz3hvcj5JLBNQPQN4UxLYACsxTAGEXxhMyYUUg1SjwlM7BCUCW5OCeLUpoaQFpgqMSM6LUvMVdl14X3qh_asGva7W3V56YNTb-PlW83VdOm_RDHQ7utkg-HLpcLcpb8vsTF756T14f7l-WKrp8fn5Z3axpQ4YEqr4yElKI2IakasOZJeSm0sUHKUEdMJsUEHGJkXHBZYy3Bgsbo_cZqnJOrKbfP3ecQy8G9dUNux5eOj2MlGgGjik-qkLtSckxuLPDh85dj4I6M3MTIjYzcDyOHowknUzm23cb8F_2P6xvd92j3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222953840</pqid></control><display><type>article</type><title>Laser shock punching: principle and influencing factors</title><source>SpringerNature Journals</source><creator>Fenske, H. ; Vollertsen, F.</creator><creatorcontrib>Fenske, H. ; Vollertsen, F.</creatorcontrib><description>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO
2
laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</description><identifier>ISSN: 0944-6524</identifier><identifier>EISSN: 1863-7353</identifier><identifier>DOI: 10.1007/s11740-019-00886-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon dioxide ; Carbon dioxide lasers ; Cutting force ; Engineering ; Foils ; Grain size ; Industrial and Production Engineering ; Laser shock processing ; Lasers ; Production ; Production Process ; Punching ; Shearing ; Shock waves ; Size effects ; Thickness</subject><ispartof>Production engineering (Berlin, Germany), 2019-06, Vol.13 (3-4), p.399-407</ispartof><rights>The Author(s) 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</citedby><cites>FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</cites><orcidid>0000-0002-8689-1267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11740-019-00886-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11740-019-00886-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Fenske, H.</creatorcontrib><creatorcontrib>Vollertsen, F.</creatorcontrib><title>Laser shock punching: principle and influencing factors</title><title>Production engineering (Berlin, Germany)</title><addtitle>Prod. Eng. Res. Devel</addtitle><description>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO
2
laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Cutting force</subject><subject>Engineering</subject><subject>Foils</subject><subject>Grain size</subject><subject>Industrial and Production Engineering</subject><subject>Laser shock processing</subject><subject>Lasers</subject><subject>Production</subject><subject>Production Process</subject><subject>Punching</subject><subject>Shearing</subject><subject>Shock waves</subject><subject>Size effects</subject><subject>Thickness</subject><issn>0944-6524</issn><issn>1863-7353</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE9LAzEQxYMoWGq_gKcFz9FJJn-9SVErFLzoOWTTpF2tu2vSPfjt3bqCN-cyMLz3hvcj5JLBNQPQN4UxLYACsxTAGEXxhMyYUUg1SjwlM7BCUCW5OCeLUpoaQFpgqMSM6LUvMVdl14X3qh_asGva7W3V56YNTb-PlW83VdOm_RDHQ7utkg-HLpcLcpb8vsTF756T14f7l-WKrp8fn5Z3axpQ4YEqr4yElKI2IakasOZJeSm0sUHKUEdMJsUEHGJkXHBZYy3Bgsbo_cZqnJOrKbfP3ecQy8G9dUNux5eOj2MlGgGjik-qkLtSckxuLPDh85dj4I6M3MTIjYzcDyOHowknUzm23cb8F_2P6xvd92j3</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fenske, H.</creator><creator>Vollertsen, F.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8689-1267</orcidid></search><sort><creationdate>20190601</creationdate><title>Laser shock punching: principle and influencing factors</title><author>Fenske, H. ; Vollertsen, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-6a6850ffe78cf6b03b2f6a54789c55cbe3f8fef020ee12425b3b509073eaad973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Cutting force</topic><topic>Engineering</topic><topic>Foils</topic><topic>Grain size</topic><topic>Industrial and Production Engineering</topic><topic>Laser shock processing</topic><topic>Lasers</topic><topic>Production</topic><topic>Production Process</topic><topic>Punching</topic><topic>Shearing</topic><topic>Shock waves</topic><topic>Size effects</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fenske, H.</creatorcontrib><creatorcontrib>Vollertsen, F.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Production engineering (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fenske, H.</au><au>Vollertsen, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser shock punching: principle and influencing factors</atitle><jtitle>Production engineering (Berlin, Germany)</jtitle><stitle>Prod. Eng. Res. Devel</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>13</volume><issue>3-4</issue><spage>399</spage><epage>407</epage><pages>399-407</pages><issn>0944-6524</issn><eissn>1863-7353</eissn><abstract>Laser shock punching is a novel shearing process, which utilizes the pressure of pulsed TEA-CO
2
laser-induced shock waves to cut foils in the micrometre range. Thin foils are difficult to cut with conventional shearing processes, because the cutting clearance scales with the foil thickness. By using a shock wave instead of a punch to transmit the cutting force, the cutting clearance ceases to exist. In order to realise single pulse cutting, certain requirements have to be met. On the one hand it is compulsory to produce high enough operating pressures. On the other hand the cutting edge still has to be “sharp” relatively to the only micrometre thick foils. If those requirements are fulfilled, the maximum cuttable foil thickness correlates with the geometrical ratio of pressurized area to cutting path length, which can roughly be described via a balance of forces between the applied force via pressure and the required force for cutting. For foils in the micrometre range size effects have to be considered. Apart from the already mentioned challenges with the geometrical scaling of the cutting edge, single grain effects are relevant for laser shock punching. If the grain size is in the range of the foil thickness, only incomplete cutting can be realised as the foil tends to rupture within the pressurized area and the cut edge exhibits an increased and inhomogeneous burr formation. Based on the identified influencing factors, the possibilities and process limits of laser shock punching can be evaluated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11740-019-00886-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8689-1267</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-6524 |
ispartof | Production engineering (Berlin, Germany), 2019-06, Vol.13 (3-4), p.399-407 |
issn | 0944-6524 1863-7353 |
language | eng |
recordid | cdi_proquest_journals_2222953840 |
source | SpringerNature Journals |
subjects | Carbon dioxide Carbon dioxide lasers Cutting force Engineering Foils Grain size Industrial and Production Engineering Laser shock processing Lasers Production Production Process Punching Shearing Shock waves Size effects Thickness |
title | Laser shock punching: principle and influencing factors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T21%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20shock%20punching:%20principle%20and%20influencing%20factors&rft.jtitle=Production%20engineering%20(Berlin,%20Germany)&rft.au=Fenske,%20H.&rft.date=2019-06-01&rft.volume=13&rft.issue=3-4&rft.spage=399&rft.epage=407&rft.pages=399-407&rft.issn=0944-6524&rft.eissn=1863-7353&rft_id=info:doi/10.1007/s11740-019-00886-3&rft_dat=%3Cproquest_cross%3E2222953840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222953840&rft_id=info:pmid/&rfr_iscdi=true |