A quadrature simplification method for fast implicit discontinuous Galerkin schemes
•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstruc...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2018-05, Vol.167, p.249-264 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 264 |
---|---|
container_issue | |
container_start_page | 249 |
container_title | Computers & fluids |
container_volume | 167 |
creator | Asada, Hiroyuki Kawai, Soshi Sawada, Keisuke |
description | •A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes.
This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO. |
doi_str_mv | 10.1016/j.compfluid.2018.03.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222923114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793018301397</els_id><sourcerecordid>2222923114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEbDHhunTSpTY_Loquw4EE9hzSdsKlts5ukgv_eriteHR4Mw7z3hnmE3DDIGbD7uy43ftjZfnJtXgCTOfAZ5QlZMFnVGVSiOiULAFFmVc3hnFzE2ME880IsyOuS7ifdBp2mgDS6Ydc764xOzo90wLT1LbU-UKtjoj9b4xJtXTR-TG6c_BTpWvcYPtxIo9nigPGKnFndR7z-7Zfk_fHhbfWUbV7Wz6vlJjMC6pQJyRpeIEjLjW2gaKRAaQSTUCNYDY20jW2B16zitSg0MrRV3ZYlcG4Mk_yS3B59d8HvJ4xJdX4K43xSFXPVBWdMzKzqyDLBxxjQql1wgw5fioE6JKg69ZegOiSogM8oZ-XyqMT5iU-HQUXjcDTYuoAmqda7fz2-AekMf20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222923114</pqid></control><display><type>article</type><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</creator><creatorcontrib>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</creatorcontrib><description>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes.
This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.03.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Basis functions ; Delta wings ; Discontinuous Galerkin method ; Galerkin method ; High-order methods ; Implicit time integration ; Jacobians ; Numerical stability ; Orthogonality ; Shock waves ; Simplification ; Stability analysis ; Time integration ; Two dimensional boundary layer</subject><ispartof>Computers & fluids, 2018-05, Vol.167, p.249-264</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</citedby><cites>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</cites><orcidid>0000-0002-9358-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2018.03.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Asada, Hiroyuki</creatorcontrib><creatorcontrib>Kawai, Soshi</creatorcontrib><creatorcontrib>Sawada, Keisuke</creatorcontrib><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><title>Computers & fluids</title><description>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes.
This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</description><subject>Basis functions</subject><subject>Delta wings</subject><subject>Discontinuous Galerkin method</subject><subject>Galerkin method</subject><subject>High-order methods</subject><subject>Implicit time integration</subject><subject>Jacobians</subject><subject>Numerical stability</subject><subject>Orthogonality</subject><subject>Shock waves</subject><subject>Simplification</subject><subject>Stability analysis</subject><subject>Time integration</subject><subject>Two dimensional boundary layer</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEbDHhunTSpTY_Loquw4EE9hzSdsKlts5ukgv_eriteHR4Mw7z3hnmE3DDIGbD7uy43ftjZfnJtXgCTOfAZ5QlZMFnVGVSiOiULAFFmVc3hnFzE2ME880IsyOuS7ifdBp2mgDS6Ydc764xOzo90wLT1LbU-UKtjoj9b4xJtXTR-TG6c_BTpWvcYPtxIo9nigPGKnFndR7z-7Zfk_fHhbfWUbV7Wz6vlJjMC6pQJyRpeIEjLjW2gaKRAaQSTUCNYDY20jW2B16zitSg0MrRV3ZYlcG4Mk_yS3B59d8HvJ4xJdX4K43xSFXPVBWdMzKzqyDLBxxjQql1wgw5fioE6JKg69ZegOiSogM8oZ-XyqMT5iU-HQUXjcDTYuoAmqda7fz2-AekMf20</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Asada, Hiroyuki</creator><creator>Kawai, Soshi</creator><creator>Sawada, Keisuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9358-8645</orcidid></search><sort><creationdate>20180515</creationdate><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><author>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Delta wings</topic><topic>Discontinuous Galerkin method</topic><topic>Galerkin method</topic><topic>High-order methods</topic><topic>Implicit time integration</topic><topic>Jacobians</topic><topic>Numerical stability</topic><topic>Orthogonality</topic><topic>Shock waves</topic><topic>Simplification</topic><topic>Stability analysis</topic><topic>Time integration</topic><topic>Two dimensional boundary layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asada, Hiroyuki</creatorcontrib><creatorcontrib>Kawai, Soshi</creatorcontrib><creatorcontrib>Sawada, Keisuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asada, Hiroyuki</au><au>Kawai, Soshi</au><au>Sawada, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</atitle><jtitle>Computers & fluids</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>167</volume><spage>249</spage><epage>264</epage><pages>249-264</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes.
This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.03.035</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9358-8645</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2018-05, Vol.167, p.249-264 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2222923114 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Basis functions Delta wings Discontinuous Galerkin method Galerkin method High-order methods Implicit time integration Jacobians Numerical stability Orthogonality Shock waves Simplification Stability analysis Time integration Two dimensional boundary layer |
title | A quadrature simplification method for fast implicit discontinuous Galerkin schemes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quadrature%20simplification%20method%20for%20fast%20implicit%20discontinuous%20Galerkin%20schemes&rft.jtitle=Computers%20&%20fluids&rft.au=Asada,%20Hiroyuki&rft.date=2018-05-15&rft.volume=167&rft.spage=249&rft.epage=264&rft.pages=249-264&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.03.035&rft_dat=%3Cproquest_cross%3E2222923114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222923114&rft_id=info:pmid/&rft_els_id=S0045793018301397&rfr_iscdi=true |