A quadrature simplification method for fast implicit discontinuous Galerkin schemes

•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstruc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2018-05, Vol.167, p.249-264
Hauptverfasser: Asada, Hiroyuki, Kawai, Soshi, Sawada, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 249
container_title Computers & fluids
container_volume 167
creator Asada, Hiroyuki
Kawai, Soshi
Sawada, Keisuke
description •A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes. This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.
doi_str_mv 10.1016/j.compfluid.2018.03.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222923114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793018301397</els_id><sourcerecordid>2222923114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLg-vEbDHhunTSpTY_Loquw4EE9hzSdsKlts5ukgv_eriteHR4Mw7z3hnmE3DDIGbD7uy43ftjZfnJtXgCTOfAZ5QlZMFnVGVSiOiULAFFmVc3hnFzE2ME880IsyOuS7ifdBp2mgDS6Ydc764xOzo90wLT1LbU-UKtjoj9b4xJtXTR-TG6c_BTpWvcYPtxIo9nigPGKnFndR7z-7Zfk_fHhbfWUbV7Wz6vlJjMC6pQJyRpeIEjLjW2gaKRAaQSTUCNYDY20jW2B16zitSg0MrRV3ZYlcG4Mk_yS3B59d8HvJ4xJdX4K43xSFXPVBWdMzKzqyDLBxxjQql1wgw5fioE6JKg69ZegOiSogM8oZ-XyqMT5iU-HQUXjcDTYuoAmqda7fz2-AekMf20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222923114</pqid></control><display><type>article</type><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</creator><creatorcontrib>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</creatorcontrib><description>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes. This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.03.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Basis functions ; Delta wings ; Discontinuous Galerkin method ; Galerkin method ; High-order methods ; Implicit time integration ; Jacobians ; Numerical stability ; Orthogonality ; Shock waves ; Simplification ; Stability analysis ; Time integration ; Two dimensional boundary layer</subject><ispartof>Computers &amp; fluids, 2018-05, Vol.167, p.249-264</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</citedby><cites>FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</cites><orcidid>0000-0002-9358-8645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compfluid.2018.03.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Asada, Hiroyuki</creatorcontrib><creatorcontrib>Kawai, Soshi</creatorcontrib><creatorcontrib>Sawada, Keisuke</creatorcontrib><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><title>Computers &amp; fluids</title><description>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes. This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</description><subject>Basis functions</subject><subject>Delta wings</subject><subject>Discontinuous Galerkin method</subject><subject>Galerkin method</subject><subject>High-order methods</subject><subject>Implicit time integration</subject><subject>Jacobians</subject><subject>Numerical stability</subject><subject>Orthogonality</subject><subject>Shock waves</subject><subject>Simplification</subject><subject>Stability analysis</subject><subject>Time integration</subject><subject>Two dimensional boundary layer</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLg-vEbDHhunTSpTY_Loquw4EE9hzSdsKlts5ukgv_eriteHR4Mw7z3hnmE3DDIGbD7uy43ftjZfnJtXgCTOfAZ5QlZMFnVGVSiOiULAFFmVc3hnFzE2ME880IsyOuS7ifdBp2mgDS6Ydc764xOzo90wLT1LbU-UKtjoj9b4xJtXTR-TG6c_BTpWvcYPtxIo9nigPGKnFndR7z-7Zfk_fHhbfWUbV7Wz6vlJjMC6pQJyRpeIEjLjW2gaKRAaQSTUCNYDY20jW2B16zitSg0MrRV3ZYlcG4Mk_yS3B59d8HvJ4xJdX4K43xSFXPVBWdMzKzqyDLBxxjQql1wgw5fioE6JKg69ZegOiSogM8oZ-XyqMT5iU-HQUXjcDTYuoAmqda7fz2-AekMf20</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Asada, Hiroyuki</creator><creator>Kawai, Soshi</creator><creator>Sawada, Keisuke</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9358-8645</orcidid></search><sort><creationdate>20180515</creationdate><title>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</title><author>Asada, Hiroyuki ; Kawai, Soshi ; Sawada, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-481b32e08f3cfb02b84e8c41809e0fa0b8fbfd039173942ae1ef79d55033cc183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Basis functions</topic><topic>Delta wings</topic><topic>Discontinuous Galerkin method</topic><topic>Galerkin method</topic><topic>High-order methods</topic><topic>Implicit time integration</topic><topic>Jacobians</topic><topic>Numerical stability</topic><topic>Orthogonality</topic><topic>Shock waves</topic><topic>Simplification</topic><topic>Stability analysis</topic><topic>Time integration</topic><topic>Two dimensional boundary layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asada, Hiroyuki</creatorcontrib><creatorcontrib>Kawai, Soshi</creatorcontrib><creatorcontrib>Sawada, Keisuke</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asada, Hiroyuki</au><au>Kawai, Soshi</au><au>Sawada, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quadrature simplification method for fast implicit discontinuous Galerkin schemes</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-05-15</date><risdate>2018</risdate><volume>167</volume><spage>249</spage><epage>264</epage><pages>249-264</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•A quadrature simplification method for fast implicit DG schemes is proposed.•The proposed method utilizes the orthogonal properties of basis functions.•Substantially fast computations are realized without any major deterioration.•Performance assessments are conducted on 2D structured and 3D unstructured meshes. This paper describes a methodology for fast implicit time integrations with high-order discontinuous Galerkin (DG) methods. The proposed approach, named quadrature simplification by orthogonality (QSO), assumes constant-flux Jacobians in each cell and utilizes the orthogonal properties of basis functions to simplify the quadrature involved in implicit time integration schemes. QSO enables substantially faster implicit time integration without any major deterioration in the computed results. In terms of the computational cost, numerical stability, and convergence property, the performance of QSO is first assessed through shock wave and boundary layer problems using 2D structured meshes. Effects of QSO on time evolutions are also examined. The application of the proposed QSO to 3D unstructured meshes is then investigated through boundary layer computations. Finally, an illustrative application to the more complex problem of the flowfield over a delta wing is used to demonstrate the capability of high-order DG methods with QSO.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.03.035</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9358-8645</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-05, Vol.167, p.249-264
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2222923114
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Basis functions
Delta wings
Discontinuous Galerkin method
Galerkin method
High-order methods
Implicit time integration
Jacobians
Numerical stability
Orthogonality
Shock waves
Simplification
Stability analysis
Time integration
Two dimensional boundary layer
title A quadrature simplification method for fast implicit discontinuous Galerkin schemes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quadrature%20simplification%20method%20for%20fast%20implicit%20discontinuous%20Galerkin%20schemes&rft.jtitle=Computers%20&%20fluids&rft.au=Asada,%20Hiroyuki&rft.date=2018-05-15&rft.volume=167&rft.spage=249&rft.epage=264&rft.pages=249-264&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.03.035&rft_dat=%3Cproquest_cross%3E2222923114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222923114&rft_id=info:pmid/&rft_els_id=S0045793018301397&rfr_iscdi=true