PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals

We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publications of the Astronomical Society of the Pacific 2019-02, Vol.131 (996), p.24503
Hauptverfasser: Biwer, C. M., Capano, Collin D., De, Soumi, Cabero, Miriam, Brown, Duncan A., Nitz, Alexander H., Raymond, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 996
container_start_page 24503
container_title Publications of the Astronomical Society of the Pacific
container_volume 131
creator Biwer, C. M.
Capano, Collin D.
De, Soumi
Cabero, Miriam
Brown, Duncan A.
Nitz, Alexander H.
Raymond, V.
description We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.
doi_str_mv 10.1088/1538-3873/aaef0b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2222921084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222921084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</originalsourceid><addsrcrecordid>eNp1kE1PJCEURYkZE3vUvUsyLrXGB9QHuNOKzpiY2Im6JjT10HK6ixJw0f9eKmV047C5gZx38ziEHDH4zUDKM1YJWQjZiDNj0MFqhyw-n36QBQCURc0l7JGfMb4AMCYZLIhdbtvLlt4MDgMOFs_pBV1u07MfipWJ2NGlCWaDCQO9iqnfmNT7gT54v_7XJ-p8oK3fjMYmetkPJmzz1awx2qmL3vdPg1nHA7LrcuDhR-6Tx-urh_ZvcXv356a9uC1s2ahUiKYrQTWoeCOglmhWIFEJKxvOXFVxhZ1SVtb1CpzrhKtMZVlOziVyY4XYJ7_mXp831dH2Ce2z9cOANmlWlVxylaHjGRqDf33DmPSLfwvTmprno3i2WWYKZsoGH2NAp8eQPx-2moGefOtJrp7k6tl3HjmZR3o_fnWOJo6aCaaVqjXwsgKhx85l-vQb-r_l793nj04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222921084</pqid></control><display><type>article</type><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><source>Jstor Complete Legacy</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V.</creator><creatorcontrib>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/aaef0b</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Astronomy ; ASTRONOMY AND ASTROPHYSICS ; Bayesian analysis ; Black holes ; Coalescence ; Gravitational waves ; methods: data analysis ; methods: statistical ; Parameter estimation</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2019-02, Vol.131 (996), p.24503</ispartof><rights>2019. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>Copyright University of Chicago Press Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</citedby><cites>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</cites><orcidid>0000000259462467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/aaef0b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biwer, C. M.</creatorcontrib><creatorcontrib>Capano, Collin D.</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Cabero, Miriam</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Raymond, V.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</description><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Bayesian analysis</subject><subject>Black holes</subject><subject>Coalescence</subject><subject>Gravitational waves</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Parameter estimation</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PJCEURYkZE3vUvUsyLrXGB9QHuNOKzpiY2Im6JjT10HK6ixJw0f9eKmV047C5gZx38ziEHDH4zUDKM1YJWQjZiDNj0MFqhyw-n36QBQCURc0l7JGfMb4AMCYZLIhdbtvLlt4MDgMOFs_pBV1u07MfipWJ2NGlCWaDCQO9iqnfmNT7gT54v_7XJ-p8oK3fjMYmetkPJmzz1awx2qmL3vdPg1nHA7LrcuDhR-6Tx-urh_ZvcXv356a9uC1s2ahUiKYrQTWoeCOglmhWIFEJKxvOXFVxhZ1SVtb1CpzrhKtMZVlOziVyY4XYJ7_mXp831dH2Ce2z9cOANmlWlVxylaHjGRqDf33DmPSLfwvTmprno3i2WWYKZsoGH2NAp8eQPx-2moGefOtJrp7k6tl3HjmZR3o_fnWOJo6aCaaVqjXwsgKhx85l-vQb-r_l793nj04</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Biwer, C. M.</creator><creator>Capano, Collin D.</creator><creator>De, Soumi</creator><creator>Cabero, Miriam</creator><creator>Brown, Duncan A.</creator><creator>Nitz, Alexander H.</creator><creator>Raymond, V.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><general>Astronomical Society of the Pacific (ASP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000259462467</orcidid></search><sort><creationdate>20190201</creationdate><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><author>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Bayesian analysis</topic><topic>Black holes</topic><topic>Coalescence</topic><topic>Gravitational waves</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biwer, C. M.</creatorcontrib><creatorcontrib>Capano, Collin D.</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Cabero, Miriam</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Raymond, V.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biwer, C. M.</au><au>Capano, Collin D.</au><au>De, Soumi</au><au>Cabero, Miriam</au><au>Brown, Duncan A.</au><au>Nitz, Alexander H.</au><au>Raymond, V.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>131</volume><issue>996</issue><spage>24503</spage><pages>24503-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/aaef0b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000000259462467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2019-02, Vol.131 (996), p.24503
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_journals_2222921084
source Jstor Complete Legacy; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection
subjects Astronomy
ASTRONOMY AND ASTROPHYSICS
Bayesian analysis
Black holes
Coalescence
Gravitational waves
methods: data analysis
methods: statistical
Parameter estimation
title PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PyCBC%20Inference:%20A%20Python-based%20Parameter%20Estimation%20Toolkit%20for%20Compact%20Binary%20Coalescence%20Signals&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Biwer,%20C.%20M.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-02-01&rft.volume=131&rft.issue=996&rft.spage=24503&rft.pages=24503-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/aaef0b&rft_dat=%3Cproquest_osti_%3E2222921084%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222921084&rft_id=info:pmid/&rfr_iscdi=true