PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals
We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of the Pacific 2019-02, Vol.131 (996), p.24503 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 996 |
container_start_page | 24503 |
container_title | Publications of the Astronomical Society of the Pacific |
container_volume | 131 |
creator | Biwer, C. M. Capano, Collin D. De, Soumi Cabero, Miriam Brown, Duncan A. Nitz, Alexander H. Raymond, V. |
description | We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run. |
doi_str_mv | 10.1088/1538-3873/aaef0b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2222921084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222921084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</originalsourceid><addsrcrecordid>eNp1kE1PJCEURYkZE3vUvUsyLrXGB9QHuNOKzpiY2Im6JjT10HK6ixJw0f9eKmV047C5gZx38ziEHDH4zUDKM1YJWQjZiDNj0MFqhyw-n36QBQCURc0l7JGfMb4AMCYZLIhdbtvLlt4MDgMOFs_pBV1u07MfipWJ2NGlCWaDCQO9iqnfmNT7gT54v_7XJ-p8oK3fjMYmetkPJmzz1awx2qmL3vdPg1nHA7LrcuDhR-6Tx-urh_ZvcXv356a9uC1s2ahUiKYrQTWoeCOglmhWIFEJKxvOXFVxhZ1SVtb1CpzrhKtMZVlOziVyY4XYJ7_mXp831dH2Ce2z9cOANmlWlVxylaHjGRqDf33DmPSLfwvTmprno3i2WWYKZsoGH2NAp8eQPx-2moGefOtJrp7k6tl3HjmZR3o_fnWOJo6aCaaVqjXwsgKhx85l-vQb-r_l793nj04</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222921084</pqid></control><display><type>article</type><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><source>Jstor Complete Legacy</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><source>Alma/SFX Local Collection</source><creator>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V.</creator><creatorcontrib>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/aaef0b</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Astronomy ; ASTRONOMY AND ASTROPHYSICS ; Bayesian analysis ; Black holes ; Coalescence ; Gravitational waves ; methods: data analysis ; methods: statistical ; Parameter estimation</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2019-02, Vol.131 (996), p.24503</ispartof><rights>2019. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>Copyright University of Chicago Press Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</citedby><cites>FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</cites><orcidid>0000000259462467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1538-3873/aaef0b/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Biwer, C. M.</creatorcontrib><creatorcontrib>Capano, Collin D.</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Cabero, Miriam</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Raymond, V.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</description><subject>Astronomy</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Bayesian analysis</subject><subject>Black holes</subject><subject>Coalescence</subject><subject>Gravitational waves</subject><subject>methods: data analysis</subject><subject>methods: statistical</subject><subject>Parameter estimation</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PJCEURYkZE3vUvUsyLrXGB9QHuNOKzpiY2Im6JjT10HK6ixJw0f9eKmV047C5gZx38ziEHDH4zUDKM1YJWQjZiDNj0MFqhyw-n36QBQCURc0l7JGfMb4AMCYZLIhdbtvLlt4MDgMOFs_pBV1u07MfipWJ2NGlCWaDCQO9iqnfmNT7gT54v_7XJ-p8oK3fjMYmetkPJmzz1awx2qmL3vdPg1nHA7LrcuDhR-6Tx-urh_ZvcXv356a9uC1s2ahUiKYrQTWoeCOglmhWIFEJKxvOXFVxhZ1SVtb1CpzrhKtMZVlOziVyY4XYJ7_mXp831dH2Ce2z9cOANmlWlVxylaHjGRqDf33DmPSLfwvTmprno3i2WWYKZsoGH2NAp8eQPx-2moGefOtJrp7k6tl3HjmZR3o_fnWOJo6aCaaVqjXwsgKhx85l-vQb-r_l793nj04</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Biwer, C. M.</creator><creator>Capano, Collin D.</creator><creator>De, Soumi</creator><creator>Cabero, Miriam</creator><creator>Brown, Duncan A.</creator><creator>Nitz, Alexander H.</creator><creator>Raymond, V.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><general>Astronomical Society of the Pacific (ASP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000259462467</orcidid></search><sort><creationdate>20190201</creationdate><title>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</title><author>Biwer, C. M. ; Capano, Collin D. ; De, Soumi ; Cabero, Miriam ; Brown, Duncan A. ; Nitz, Alexander H. ; Raymond, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-37d4097e9273068eab08e93c8721f5529ed99c866b0ffd3f5a5c1d3f228e2ac33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Astronomy</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Bayesian analysis</topic><topic>Black holes</topic><topic>Coalescence</topic><topic>Gravitational waves</topic><topic>methods: data analysis</topic><topic>methods: statistical</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biwer, C. M.</creatorcontrib><creatorcontrib>Capano, Collin D.</creatorcontrib><creatorcontrib>De, Soumi</creatorcontrib><creatorcontrib>Cabero, Miriam</creatorcontrib><creatorcontrib>Brown, Duncan A.</creatorcontrib><creatorcontrib>Nitz, Alexander H.</creatorcontrib><creatorcontrib>Raymond, V.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biwer, C. M.</au><au>Capano, Collin D.</au><au>De, Soumi</au><au>Cabero, Miriam</au><au>Brown, Duncan A.</au><au>Nitz, Alexander H.</au><au>Raymond, V.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2019-02-01</date><risdate>2019</risdate><volume>131</volume><issue>996</issue><spage>24503</spage><pages>24503-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>We introduce new modules in the open-source PyCBC gravitational-wave astronomy toolkit that implement Bayesian inference for compact-object binary mergers. We review the Bayesian inference methods implemented and describe the structure of the modules. We demonstrate that the PyCBC Inference modules produce unbiased estimates of the parameters of a simulated population of binary black hole mergers. We show that the parameters' posterior distributions obtained using our new code agree well with the published estimates for binary black holes in the first Advanced LIGO-Virgo observing run.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/aaef0b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000000259462467</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6280 |
ispartof | Publications of the Astronomical Society of the Pacific, 2019-02, Vol.131 (996), p.24503 |
issn | 0004-6280 1538-3873 |
language | eng |
recordid | cdi_proquest_journals_2222921084 |
source | Jstor Complete Legacy; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link; Alma/SFX Local Collection |
subjects | Astronomy ASTRONOMY AND ASTROPHYSICS Bayesian analysis Black holes Coalescence Gravitational waves methods: data analysis methods: statistical Parameter estimation |
title | PyCBC Inference: A Python-based Parameter Estimation Toolkit for Compact Binary Coalescence Signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PyCBC%20Inference:%20A%20Python-based%20Parameter%20Estimation%20Toolkit%20for%20Compact%20Binary%20Coalescence%20Signals&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Biwer,%20C.%20M.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2019-02-01&rft.volume=131&rft.issue=996&rft.spage=24503&rft.pages=24503-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/aaef0b&rft_dat=%3Cproquest_osti_%3E2222921084%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222921084&rft_id=info:pmid/&rfr_iscdi=true |