Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties

Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn 2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sol-gel science and technology 2019-06, Vol.90 (3), p.631-642
Hauptverfasser: Abdel Maksoud, M. I. A., El-ghandour, Ahmed, El-Sayyad, Gharieb S., Awed, A. S., Ashour, A. H., El-Batal, Ahmed I., Gobara, Mohamed, Abdel-Khalek, E. K., El-Okr, M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue 3
container_start_page 631
container_title Journal of sol-gel science and technology
container_volume 90
creator Abdel Maksoud, M. I. A.
El-ghandour, Ahmed
El-Sayyad, Gharieb S.
Awed, A. S.
Ashour, A. H.
El-Batal, Ahmed I.
Gobara, Mohamed
Abdel-Khalek, E. K.
El-Okr, M. M.
description Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn 2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy dispersive X-ray (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). EDX analyses affirm the stoichiometry of the synthesized samples with the intended ratios. The FTIR and XRD prove the presence of a single-phase cubic spinel structure for all as-synthesized samples. The dislocation, the inter-chain distance and the distortion parameter values decrease with increasing Mn 2+ content, which outweigh the improvement of the crystal structure of the doped CFO samples. SEM micrographs illustrate that the incorporation of Mn 2+ significantly soars the porosity of the samples. TEM images reveal that the samples comprise particles in the nanometer range with spherical shape and porous nature. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. For instance, at x  = 0, a slight variation in the weight loss estimated by 8% is observed while at x  = 0.25 the weight loss has reached up to 40%. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. Finally, a reduction in the magnetization of the pure CFO from 68.419 emu g −1 to 50.307 emu g −1 is achieved at x  = 0.25. Herein, manganese substituted cobalt ferrites were synthesized using a facile sol–gel method. The Rietveld refinements of Co 1-x Mn x Fe 2 O 4 have studied. SEM images have indicated that the surface of the as-synthesized NPs has some porous shapes. EDX analyses have affirmed the stoichiometry of the samples. The TEM image reveals that particles are in the nanometer range. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. The hysteresis loops reveal that the magnetic behavior of the CFO NPs is significantly influenced by Mn 2+ ions substitution. Highlights Mn 2 + is successfully incorporated into cobalt ferrite (CoFe 2 O
doi_str_mv 10.1007/s10971-019-04964-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222701488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222701488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-179f267813c5e79081c21b4fb59fb4eb34f264f81237fc265ce8c3438c1081743</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhq0KpC7QF-jJUo8QajtO7HBDK1qQtuqlPVuOM941ytpb20HbW9-BI2_Hk-Allbgxl5nRfP-MND9Cnym5pISIr4mSTtCK0K4ivGt5tf-AFrQRdcUlb4_QgnRMVkQQ8RGdpHRPCGk4FQv0dOdNiLsQdXbB42DxD8_OsfM5YBN6PWZsIUaXAT84jVMYn_89rmHEW8ibMFwVMrn1Jidc1M4Pk4EBm432a0ilx3kDOOU4mTxFPV4c-rg9FIODEUyOzlxg7Qe81WsP2Rm8i2EHMTtIZ-jY6jHBp__5FP3-dvNreVutfn6_W16vKsNkmysqOstaIWltGhAdkdQw2nPbN53tOfQ1L2NuJWW1sIa1jQFpal5LQwsreH2Kvsx7y-k_E6Ss7sMUfTmpWAlBKJeyUGymTAwpRbBqF91Wx7-KEnUwQc0mqGKCejVB7YuonkWpwOUn8W31O6oXfAeNbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222701488</pqid></control><display><type>article</type><title>Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties</title><source>Springer Nature - Complete Springer Journals</source><creator>Abdel Maksoud, M. I. A. ; El-ghandour, Ahmed ; El-Sayyad, Gharieb S. ; Awed, A. S. ; Ashour, A. H. ; El-Batal, Ahmed I. ; Gobara, Mohamed ; Abdel-Khalek, E. K. ; El-Okr, M. M.</creator><creatorcontrib>Abdel Maksoud, M. I. A. ; El-ghandour, Ahmed ; El-Sayyad, Gharieb S. ; Awed, A. S. ; Ashour, A. H. ; El-Batal, Ahmed I. ; Gobara, Mohamed ; Abdel-Khalek, E. K. ; El-Okr, M. M.</creatorcontrib><description>Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn 2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy dispersive X-ray (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). EDX analyses affirm the stoichiometry of the synthesized samples with the intended ratios. The FTIR and XRD prove the presence of a single-phase cubic spinel structure for all as-synthesized samples. The dislocation, the inter-chain distance and the distortion parameter values decrease with increasing Mn 2+ content, which outweigh the improvement of the crystal structure of the doped CFO samples. SEM micrographs illustrate that the incorporation of Mn 2+ significantly soars the porosity of the samples. TEM images reveal that the samples comprise particles in the nanometer range with spherical shape and porous nature. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. For instance, at x  = 0, a slight variation in the weight loss estimated by 8% is observed while at x  = 0.25 the weight loss has reached up to 40%. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. Finally, a reduction in the magnetization of the pure CFO from 68.419 emu g −1 to 50.307 emu g −1 is achieved at x  = 0.25. Herein, manganese substituted cobalt ferrites were synthesized using a facile sol–gel method. The Rietveld refinements of Co 1-x Mn x Fe 2 O 4 have studied. SEM images have indicated that the surface of the as-synthesized NPs has some porous shapes. EDX analyses have affirmed the stoichiometry of the samples. The TEM image reveals that particles are in the nanometer range. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. The hysteresis loops reveal that the magnetic behavior of the CFO NPs is significantly influenced by Mn 2+ ions substitution. Highlights Mn 2 + is successfully incorporated into cobalt ferrite (CoFe 2 O 4 ) via sol–gel method. XRD and Williamson-Hall analyses reveal that all samples comprise nanoparticles. SEM micrographs show that the samples’ porosity soars with increasing Mn 2+ content. TEM images reveal that the samples consist of spherical nanoparticle porous nature. The sample of the highest content of Mn 2+ has the lowest Gibbs energy.</description><identifier>ISSN: 0928-0707</identifier><identifier>EISSN: 1573-4846</identifier><identifier>DOI: 10.1007/s10971-019-04964-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Ceramics ; Chemistry and Materials Science ; Cobalt ferrites ; Composites ; Crystal structure ; Dielectric loss ; Dielectric properties ; Dislocations ; Electrochemical impedance spectroscopy ; Electron microscopes ; electronic ; Fourier transforms ; Glass ; Infrared spectroscopy ; Inorganic Chemistry ; magnetic and ferroelectric applications ; Magnetic properties ; Manganese ions ; Materials Science ; Nanotechnology ; Natural Materials ; Optical and Electronic Materials ; Original Paper: Sol-gel and hybrid materials for dielectric ; Photomicrographs ; Porosity ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Stoichiometry ; Synthesis ; Thermogravimetric analysis ; Torquemeters ; Transmission electron microscopy ; Weight loss ; X-ray diffraction</subject><ispartof>Journal of sol-gel science and technology, 2019-06, Vol.90 (3), p.631-642</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-179f267813c5e79081c21b4fb59fb4eb34f264f81237fc265ce8c3438c1081743</citedby><cites>FETCH-LOGICAL-c286t-179f267813c5e79081c21b4fb59fb4eb34f264f81237fc265ce8c3438c1081743</cites><orcidid>0000-0001-7708-9646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10971-019-04964-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10971-019-04964-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Abdel Maksoud, M. I. A.</creatorcontrib><creatorcontrib>El-ghandour, Ahmed</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Awed, A. S.</creatorcontrib><creatorcontrib>Ashour, A. H.</creatorcontrib><creatorcontrib>El-Batal, Ahmed I.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><creatorcontrib>Abdel-Khalek, E. K.</creatorcontrib><creatorcontrib>El-Okr, M. M.</creatorcontrib><title>Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties</title><title>Journal of sol-gel science and technology</title><addtitle>J Sol-Gel Sci Technol</addtitle><description>Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn 2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy dispersive X-ray (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). EDX analyses affirm the stoichiometry of the synthesized samples with the intended ratios. The FTIR and XRD prove the presence of a single-phase cubic spinel structure for all as-synthesized samples. The dislocation, the inter-chain distance and the distortion parameter values decrease with increasing Mn 2+ content, which outweigh the improvement of the crystal structure of the doped CFO samples. SEM micrographs illustrate that the incorporation of Mn 2+ significantly soars the porosity of the samples. TEM images reveal that the samples comprise particles in the nanometer range with spherical shape and porous nature. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. For instance, at x  = 0, a slight variation in the weight loss estimated by 8% is observed while at x  = 0.25 the weight loss has reached up to 40%. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. Finally, a reduction in the magnetization of the pure CFO from 68.419 emu g −1 to 50.307 emu g −1 is achieved at x  = 0.25. Herein, manganese substituted cobalt ferrites were synthesized using a facile sol–gel method. The Rietveld refinements of Co 1-x Mn x Fe 2 O 4 have studied. SEM images have indicated that the surface of the as-synthesized NPs has some porous shapes. EDX analyses have affirmed the stoichiometry of the samples. The TEM image reveals that particles are in the nanometer range. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. The hysteresis loops reveal that the magnetic behavior of the CFO NPs is significantly influenced by Mn 2+ ions substitution. Highlights Mn 2 + is successfully incorporated into cobalt ferrite (CoFe 2 O 4 ) via sol–gel method. XRD and Williamson-Hall analyses reveal that all samples comprise nanoparticles. SEM micrographs show that the samples’ porosity soars with increasing Mn 2+ content. TEM images reveal that the samples consist of spherical nanoparticle porous nature. The sample of the highest content of Mn 2+ has the lowest Gibbs energy.</description><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Cobalt ferrites</subject><subject>Composites</subject><subject>Crystal structure</subject><subject>Dielectric loss</subject><subject>Dielectric properties</subject><subject>Dislocations</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electron microscopes</subject><subject>electronic</subject><subject>Fourier transforms</subject><subject>Glass</subject><subject>Infrared spectroscopy</subject><subject>Inorganic Chemistry</subject><subject>magnetic and ferroelectric applications</subject><subject>Magnetic properties</subject><subject>Manganese ions</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Natural Materials</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper: Sol-gel and hybrid materials for dielectric</subject><subject>Photomicrographs</subject><subject>Porosity</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Synthesis</subject><subject>Thermogravimetric analysis</subject><subject>Torquemeters</subject><subject>Transmission electron microscopy</subject><subject>Weight loss</subject><subject>X-ray diffraction</subject><issn>0928-0707</issn><issn>1573-4846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAQhq0KpC7QF-jJUo8QajtO7HBDK1qQtuqlPVuOM941ytpb20HbW9-BI2_Hk-Allbgxl5nRfP-MND9Cnym5pISIr4mSTtCK0K4ivGt5tf-AFrQRdcUlb4_QgnRMVkQQ8RGdpHRPCGk4FQv0dOdNiLsQdXbB42DxD8_OsfM5YBN6PWZsIUaXAT84jVMYn_89rmHEW8ibMFwVMrn1Jidc1M4Pk4EBm432a0ilx3kDOOU4mTxFPV4c-rg9FIODEUyOzlxg7Qe81WsP2Rm8i2EHMTtIZ-jY6jHBp__5FP3-dvNreVutfn6_W16vKsNkmysqOstaIWltGhAdkdQw2nPbN53tOfQ1L2NuJWW1sIa1jQFpal5LQwsreH2Kvsx7y-k_E6Ss7sMUfTmpWAlBKJeyUGymTAwpRbBqF91Wx7-KEnUwQc0mqGKCejVB7YuonkWpwOUn8W31O6oXfAeNbQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Abdel Maksoud, M. I. A.</creator><creator>El-ghandour, Ahmed</creator><creator>El-Sayyad, Gharieb S.</creator><creator>Awed, A. S.</creator><creator>Ashour, A. H.</creator><creator>El-Batal, Ahmed I.</creator><creator>Gobara, Mohamed</creator><creator>Abdel-Khalek, E. K.</creator><creator>El-Okr, M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7708-9646</orcidid></search><sort><creationdate>20190601</creationdate><title>Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties</title><author>Abdel Maksoud, M. I. A. ; El-ghandour, Ahmed ; El-Sayyad, Gharieb S. ; Awed, A. S. ; Ashour, A. H. ; El-Batal, Ahmed I. ; Gobara, Mohamed ; Abdel-Khalek, E. K. ; El-Okr, M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-179f267813c5e79081c21b4fb59fb4eb34f264f81237fc265ce8c3438c1081743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Cobalt ferrites</topic><topic>Composites</topic><topic>Crystal structure</topic><topic>Dielectric loss</topic><topic>Dielectric properties</topic><topic>Dislocations</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electron microscopes</topic><topic>electronic</topic><topic>Fourier transforms</topic><topic>Glass</topic><topic>Infrared spectroscopy</topic><topic>Inorganic Chemistry</topic><topic>magnetic and ferroelectric applications</topic><topic>Magnetic properties</topic><topic>Manganese ions</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Natural Materials</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper: Sol-gel and hybrid materials for dielectric</topic><topic>Photomicrographs</topic><topic>Porosity</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Synthesis</topic><topic>Thermogravimetric analysis</topic><topic>Torquemeters</topic><topic>Transmission electron microscopy</topic><topic>Weight loss</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdel Maksoud, M. I. A.</creatorcontrib><creatorcontrib>El-ghandour, Ahmed</creatorcontrib><creatorcontrib>El-Sayyad, Gharieb S.</creatorcontrib><creatorcontrib>Awed, A. S.</creatorcontrib><creatorcontrib>Ashour, A. H.</creatorcontrib><creatorcontrib>El-Batal, Ahmed I.</creatorcontrib><creatorcontrib>Gobara, Mohamed</creatorcontrib><creatorcontrib>Abdel-Khalek, E. K.</creatorcontrib><creatorcontrib>El-Okr, M. M.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of sol-gel science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel Maksoud, M. I. A.</au><au>El-ghandour, Ahmed</au><au>El-Sayyad, Gharieb S.</au><au>Awed, A. S.</au><au>Ashour, A. H.</au><au>El-Batal, Ahmed I.</au><au>Gobara, Mohamed</au><au>Abdel-Khalek, E. K.</au><au>El-Okr, M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties</atitle><jtitle>Journal of sol-gel science and technology</jtitle><stitle>J Sol-Gel Sci Technol</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>90</volume><issue>3</issue><spage>631</spage><epage>642</epage><pages>631-642</pages><issn>0928-0707</issn><eissn>1573-4846</eissn><abstract>Precise tailoring of nanostructured cobalt ferrite paves the way to design and develop devices for stress and noncontact torque sensors. Herein, Mn 2+ ions are inserted into cobalt ferrite with different ratios using a facile sol–gel method. The as-synthesized ferrites are characterized via energy dispersive X-ray (EDX), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), high resolution transmission electron microscope (HR-TEM), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and vibrating sample magnetometer (VSM). EDX analyses affirm the stoichiometry of the synthesized samples with the intended ratios. The FTIR and XRD prove the presence of a single-phase cubic spinel structure for all as-synthesized samples. The dislocation, the inter-chain distance and the distortion parameter values decrease with increasing Mn 2+ content, which outweigh the improvement of the crystal structure of the doped CFO samples. SEM micrographs illustrate that the incorporation of Mn 2+ significantly soars the porosity of the samples. TEM images reveal that the samples comprise particles in the nanometer range with spherical shape and porous nature. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. For instance, at x  = 0, a slight variation in the weight loss estimated by 8% is observed while at x  = 0.25 the weight loss has reached up to 40%. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. Finally, a reduction in the magnetization of the pure CFO from 68.419 emu g −1 to 50.307 emu g −1 is achieved at x  = 0.25. Herein, manganese substituted cobalt ferrites were synthesized using a facile sol–gel method. The Rietveld refinements of Co 1-x Mn x Fe 2 O 4 have studied. SEM images have indicated that the surface of the as-synthesized NPs has some porous shapes. EDX analyses have affirmed the stoichiometry of the samples. The TEM image reveals that particles are in the nanometer range. Thermal analyses show that the weight loss is dependent on Mn 2+ content in the sample. The dielectric losses (8 × 10 5 ) of Co 0.5 Mn 0.5 Fe 2 O 4 is enough to meet the demands of microwave applications. The hysteresis loops reveal that the magnetic behavior of the CFO NPs is significantly influenced by Mn 2+ ions substitution. Highlights Mn 2 + is successfully incorporated into cobalt ferrite (CoFe 2 O 4 ) via sol–gel method. XRD and Williamson-Hall analyses reveal that all samples comprise nanoparticles. SEM micrographs show that the samples’ porosity soars with increasing Mn 2+ content. TEM images reveal that the samples consist of spherical nanoparticle porous nature. The sample of the highest content of Mn 2+ has the lowest Gibbs energy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10971-019-04964-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7708-9646</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0928-0707
ispartof Journal of sol-gel science and technology, 2019-06, Vol.90 (3), p.631-642
issn 0928-0707
1573-4846
language eng
recordid cdi_proquest_journals_2222701488
source Springer Nature - Complete Springer Journals
subjects Ceramics
Chemistry and Materials Science
Cobalt ferrites
Composites
Crystal structure
Dielectric loss
Dielectric properties
Dislocations
Electrochemical impedance spectroscopy
Electron microscopes
electronic
Fourier transforms
Glass
Infrared spectroscopy
Inorganic Chemistry
magnetic and ferroelectric applications
Magnetic properties
Manganese ions
Materials Science
Nanotechnology
Natural Materials
Optical and Electronic Materials
Original Paper: Sol-gel and hybrid materials for dielectric
Photomicrographs
Porosity
Scanning electron microscopy
Sol-gel processes
Spectrum analysis
Stoichiometry
Synthesis
Thermogravimetric analysis
Torquemeters
Transmission electron microscopy
Weight loss
X-ray diffraction
title Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporation%20of%20Mn2+%20into%20cobalt%20ferrite%20via%20sol%E2%80%93gel%20method:%20insights%20on%20induced%20changes%20in%20the%20structural,%20thermal,%20dielectric,%20and%20magnetic%20properties&rft.jtitle=Journal%20of%20sol-gel%20science%20and%20technology&rft.au=Abdel%20Maksoud,%20M.%20I.%20A.&rft.date=2019-06-01&rft.volume=90&rft.issue=3&rft.spage=631&rft.epage=642&rft.pages=631-642&rft.issn=0928-0707&rft.eissn=1573-4846&rft_id=info:doi/10.1007/s10971-019-04964-x&rft_dat=%3Cproquest_cross%3E2222701488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222701488&rft_id=info:pmid/&rfr_iscdi=true