Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling

A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasifica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-05, Vol.174, p.897-910
Hauptverfasser: Barroso, Gabriel, Roth, Simon, Nussbaumer, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 910
container_issue
container_start_page 897
container_title Energy (Oxford)
container_volume 174
creator Barroso, Gabriel
Roth, Simon
Nussbaumer, Thomas
description A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasification. In the experiments, temperature profiles above the fuel bed and the fuel bed height are measured. Pyrolysis gas is sampled with a cooled probe and analysed on its CO, CO2, CH4, VOC, H2O, H2 and O2 composition. The experiments show that drying occurs in the first third of the grate with a relatively constant release of water vapour from the fuel bed. The temperature of the dried fuel further increases on the grate. The release of volatiles from the fuel pyrolysis starts towards the end of the drying zone and occurs in a relatively narrow zone. The fuel bed simulations are validated, discussed and used to analyse the influence of parameters on the fuel conversion such as the moisture content of the fuel and the primary air distribution. The model forms a basis to calculate the entry conditions for subsequent gas phase simulations. •1D-transient fuel-bed model.•Validation with pyrolysis gas measurements of a grate boiler.•Simulations of variations of load, moisture content, primary air-fuel-ratio.•Discussion of drying, pyrolysis and gasification regions on the grate.
doi_str_mv 10.1016/j.energy.2019.03.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222647198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219304062</els_id><sourcerecordid>2222647198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-d3ea7bb64bcab65137334422515a8f7a28e5d7d041a6f012c0c0732d15a3fde13</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoPPAQ8t06atmkvgix-LCx40XNIk2lJ6TZr0l3ovzdrPTuXYebNe7x5hNwzSBmw8rFPcUTfzWkGrE6BpwDZBVmxSvCkFFVxSVbAS0iKPM-uyU0IPQAUVV2vSLsdTxgm26nJupG6ljbW7VUIVLuI-PC7Hamie3eyY0c7ryakzUwPs3fDHGygnQpUjWoZ1Ghoe8SBNmgix-AwRNotuWrVEPDur6_J1-vL5-Y92X28bTfPu0RzwafEcFSiacq80aopCxaXPHrOClaoqhUqq7AwwkDOVNkCyzRoEDwzEeatQcbX5GHRPXj3fYyPyd4dffQWZBarzAWrq3iVL1fauxA8tvLg7V75WTKQ50RlL5dE5TlRCVzGRCPtaaFh_OBk0cugLY4ajfWoJ2mc_V_gBylugi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222647198</pqid></control><display><type>article</type><title>Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling</title><source>Elsevier ScienceDirect Journals</source><creator>Barroso, Gabriel ; Roth, Simon ; Nussbaumer, Thomas</creator><creatorcontrib>Barroso, Gabriel ; Roth, Simon ; Nussbaumer, Thomas</creatorcontrib><description>A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasification. In the experiments, temperature profiles above the fuel bed and the fuel bed height are measured. Pyrolysis gas is sampled with a cooled probe and analysed on its CO, CO2, CH4, VOC, H2O, H2 and O2 composition. The experiments show that drying occurs in the first third of the grate with a relatively constant release of water vapour from the fuel bed. The temperature of the dried fuel further increases on the grate. The release of volatiles from the fuel pyrolysis starts towards the end of the drying zone and occurs in a relatively narrow zone. The fuel bed simulations are validated, discussed and used to analyse the influence of parameters on the fuel conversion such as the moisture content of the fuel and the primary air distribution. The model forms a basis to calculate the entry conditions for subsequent gas phase simulations. •1D-transient fuel-bed model.•Validation with pyrolysis gas measurements of a grate boiler.•Simulations of variations of load, moisture content, primary air-fuel-ratio.•Discussion of drying, pyrolysis and gasification regions on the grate.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.03.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Air pollution ; Boilers ; Carbon dioxide ; Computer simulation ; Conversion ; Drying ; Emission measurements ; Excess air ratio ; Fuels ; Furnace simulation ; Gas analysis ; Gasification ; Mathematical models ; Model forms ; Moisture content ; Moving column ; Pollutants ; Pyrolysis ; Simulation ; Temperature profiles ; Vapor phases ; VOCs ; Volatile organic compounds ; Volatiles ; Water content ; Water vapor</subject><ispartof>Energy (Oxford), 2019-05, Vol.174, p.897-910</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-d3ea7bb64bcab65137334422515a8f7a28e5d7d041a6f012c0c0732d15a3fde13</citedby><cites>FETCH-LOGICAL-c373t-d3ea7bb64bcab65137334422515a8f7a28e5d7d041a6f012c0c0732d15a3fde13</cites><orcidid>0000-0002-9590-9983</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544219304062$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Barroso, Gabriel</creatorcontrib><creatorcontrib>Roth, Simon</creatorcontrib><creatorcontrib>Nussbaumer, Thomas</creatorcontrib><title>Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling</title><title>Energy (Oxford)</title><description>A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasification. In the experiments, temperature profiles above the fuel bed and the fuel bed height are measured. Pyrolysis gas is sampled with a cooled probe and analysed on its CO, CO2, CH4, VOC, H2O, H2 and O2 composition. The experiments show that drying occurs in the first third of the grate with a relatively constant release of water vapour from the fuel bed. The temperature of the dried fuel further increases on the grate. The release of volatiles from the fuel pyrolysis starts towards the end of the drying zone and occurs in a relatively narrow zone. The fuel bed simulations are validated, discussed and used to analyse the influence of parameters on the fuel conversion such as the moisture content of the fuel and the primary air distribution. The model forms a basis to calculate the entry conditions for subsequent gas phase simulations. •1D-transient fuel-bed model.•Validation with pyrolysis gas measurements of a grate boiler.•Simulations of variations of load, moisture content, primary air-fuel-ratio.•Discussion of drying, pyrolysis and gasification regions on the grate.</description><subject>Air pollution</subject><subject>Boilers</subject><subject>Carbon dioxide</subject><subject>Computer simulation</subject><subject>Conversion</subject><subject>Drying</subject><subject>Emission measurements</subject><subject>Excess air ratio</subject><subject>Fuels</subject><subject>Furnace simulation</subject><subject>Gas analysis</subject><subject>Gasification</subject><subject>Mathematical models</subject><subject>Model forms</subject><subject>Moisture content</subject><subject>Moving column</subject><subject>Pollutants</subject><subject>Pyrolysis</subject><subject>Simulation</subject><subject>Temperature profiles</subject><subject>Vapor phases</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><subject>Volatiles</subject><subject>Water content</subject><subject>Water vapor</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoPPAQ8t06atmkvgix-LCx40XNIk2lJ6TZr0l3ovzdrPTuXYebNe7x5hNwzSBmw8rFPcUTfzWkGrE6BpwDZBVmxSvCkFFVxSVbAS0iKPM-uyU0IPQAUVV2vSLsdTxgm26nJupG6ljbW7VUIVLuI-PC7Hamie3eyY0c7ryakzUwPs3fDHGygnQpUjWoZ1Ghoe8SBNmgix-AwRNotuWrVEPDur6_J1-vL5-Y92X28bTfPu0RzwafEcFSiacq80aopCxaXPHrOClaoqhUqq7AwwkDOVNkCyzRoEDwzEeatQcbX5GHRPXj3fYyPyd4dffQWZBarzAWrq3iVL1fauxA8tvLg7V75WTKQ50RlL5dE5TlRCVzGRCPtaaFh_OBk0cugLY4ajfWoJ2mc_V_gBylugi4</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Barroso, Gabriel</creator><creator>Roth, Simon</creator><creator>Nussbaumer, Thomas</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9590-9983</orcidid></search><sort><creationdate>20190501</creationdate><title>Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling</title><author>Barroso, Gabriel ; Roth, Simon ; Nussbaumer, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-d3ea7bb64bcab65137334422515a8f7a28e5d7d041a6f012c0c0732d15a3fde13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Air pollution</topic><topic>Boilers</topic><topic>Carbon dioxide</topic><topic>Computer simulation</topic><topic>Conversion</topic><topic>Drying</topic><topic>Emission measurements</topic><topic>Excess air ratio</topic><topic>Fuels</topic><topic>Furnace simulation</topic><topic>Gas analysis</topic><topic>Gasification</topic><topic>Mathematical models</topic><topic>Model forms</topic><topic>Moisture content</topic><topic>Moving column</topic><topic>Pollutants</topic><topic>Pyrolysis</topic><topic>Simulation</topic><topic>Temperature profiles</topic><topic>Vapor phases</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><topic>Volatiles</topic><topic>Water content</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barroso, Gabriel</creatorcontrib><creatorcontrib>Roth, Simon</creatorcontrib><creatorcontrib>Nussbaumer, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barroso, Gabriel</au><au>Roth, Simon</au><au>Nussbaumer, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>174</volume><spage>897</spage><epage>910</epage><pages>897-910</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A profound understanding of the fuel conversion on a grate boiler is crucial for an optimised boiler operation with a minimised pollutant emission. This work presents gas measurements and numeric simulations of a 150 kW moving grate boiler. The fuel bed model considers drying, pyrolysis and gasification. In the experiments, temperature profiles above the fuel bed and the fuel bed height are measured. Pyrolysis gas is sampled with a cooled probe and analysed on its CO, CO2, CH4, VOC, H2O, H2 and O2 composition. The experiments show that drying occurs in the first third of the grate with a relatively constant release of water vapour from the fuel bed. The temperature of the dried fuel further increases on the grate. The release of volatiles from the fuel pyrolysis starts towards the end of the drying zone and occurs in a relatively narrow zone. The fuel bed simulations are validated, discussed and used to analyse the influence of parameters on the fuel conversion such as the moisture content of the fuel and the primary air distribution. The model forms a basis to calculate the entry conditions for subsequent gas phase simulations. •1D-transient fuel-bed model.•Validation with pyrolysis gas measurements of a grate boiler.•Simulations of variations of load, moisture content, primary air-fuel-ratio.•Discussion of drying, pyrolysis and gasification regions on the grate.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.03.002</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9590-9983</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-05, Vol.174, p.897-910
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2222647198
source Elsevier ScienceDirect Journals
subjects Air pollution
Boilers
Carbon dioxide
Computer simulation
Conversion
Drying
Emission measurements
Excess air ratio
Fuels
Furnace simulation
Gas analysis
Gasification
Mathematical models
Model forms
Moisture content
Moving column
Pollutants
Pyrolysis
Simulation
Temperature profiles
Vapor phases
VOCs
Volatile organic compounds
Volatiles
Water content
Water vapor
title Investigation of biomass conversion on a moving grate by pyrolysis gas analysis and fuel bed modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A15%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20biomass%20conversion%20on%20a%20moving%20grate%20by%20pyrolysis%20gas%20analysis%20and%20fuel%20bed%20modelling&rft.jtitle=Energy%20(Oxford)&rft.au=Barroso,%20Gabriel&rft.date=2019-05-01&rft.volume=174&rft.spage=897&rft.epage=910&rft.pages=897-910&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.03.002&rft_dat=%3Cproquest_cross%3E2222647198%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222647198&rft_id=info:pmid/&rft_els_id=S0360544219304062&rfr_iscdi=true