Random coefficient continuous systems: Testing for extreme sample path behavior

This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive beha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2019-04, Vol.209 (2), p.208-237
Hauptverfasser: Tao, Yubo, Phillips, Peter C.B., Yu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 208
container_title Journal of econometrics
container_volume 209
creator Tao, Yubo
Phillips, Peter C.B.
Yu, Jun
description This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive behavior according to specific regions of the parameter space that open up the potential for testing these forms of extreme behavior. A two-stage approach that employs realized volatility is proposed for the continuous system estimation, asymptotic theory is developed, and test statistics to identify the different forms of extreme sample path behavior are proposed. Simulations show that the proposed estimators work well in empirically realistic settings and that the tests have good size and power properties in discriminating characteristics in the data that differ from typical unit root behavior. The theory is extended to cover models where the random persistence parameter is endogenously determined. An empirical application based on daily real S&P 500 index data over 1928–2018 reveals strong evidence against parameter constancy over the whole sample period leading to a long duration of what the model characterizes as extreme behavior in real stock prices.
doi_str_mv 10.1016/j.jeconom.2019.01.002
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2222646635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A578450087</galeid><els_id>S0304407619300053</els_id><sourcerecordid>A578450087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-b9f6e6d8a3d3b9d7401adae46a59d28d9315ff5e4cf9070d4e46b6689a3bc27b3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKEgeGudtEnaehER_4EgiJ5Dmkx2U7bNmrSi394s691cEiZv3sz7EXJOoaBAxVVf9Kj96IeiBNoWQAuA8oAsaFOXuWhafkgWUAHLGdTimJzE2AMAZ021IK9vajR-yLRHa512OE7pPU5unP0cs_gTJxzidfaOMdVWmfUhw-8p4IBZVMN2g9lWTeusw7X6cj6ckiOrNhHP_u4l-Xi4f797yl9eH5_vbl9yzRqY8q61AoVpVGWqrjU1A6qMQiYUb03ZmLai3FqOTNsWajAsfXUiZVFVp8u6q5bkYu-7Df5zTsvJ3s9hTCNlmY5gQlQ8qS73qpXaoHTjLlnafqXmGKW85XXDOEBTJyHfC3XwMQa0chvcoMKPpCB3kGUv_yDLHWQJVCbIqe9m34cp65fDIOOOoUbjAupJGu_-cfgFPYyInQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222646635</pqid></control><display><type>article</type><title>Random coefficient continuous systems: Testing for extreme sample path behavior</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tao, Yubo ; Phillips, Peter C.B. ; Yu, Jun</creator><creatorcontrib>Tao, Yubo ; Phillips, Peter C.B. ; Yu, Jun</creatorcontrib><description>This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive behavior according to specific regions of the parameter space that open up the potential for testing these forms of extreme behavior. A two-stage approach that employs realized volatility is proposed for the continuous system estimation, asymptotic theory is developed, and test statistics to identify the different forms of extreme sample path behavior are proposed. Simulations show that the proposed estimators work well in empirically realistic settings and that the tests have good size and power properties in discriminating characteristics in the data that differ from typical unit root behavior. The theory is extended to cover models where the random persistence parameter is endogenously determined. An empirical application based on daily real S&amp;P 500 index data over 1928–2018 reveals strong evidence against parameter constancy over the whole sample period leading to a long duration of what the model characterizes as extreme behavior in real stock prices.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2019.01.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Behavior ; Bubble testing ; Continuous time models ; Discrete time ; Explosive path ; Extreme behavior ; Infill asymptotics ; Mathematical models ; Parameter estimation ; Power ; Prices ; Random coefficient autoregression ; Random variables ; Simulation ; Stock market indexes</subject><ispartof>Journal of econometrics, 2019-04, Vol.209 (2), p.208-237</ispartof><rights>2019 Elsevier B.V.</rights><rights>COPYRIGHT 2019 Elsevier Science Publishers</rights><rights>Copyright Elsevier Sequoia S.A. Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-b9f6e6d8a3d3b9d7401adae46a59d28d9315ff5e4cf9070d4e46b6689a3bc27b3</citedby><cites>FETCH-LOGICAL-c480t-b9f6e6d8a3d3b9d7401adae46a59d28d9315ff5e4cf9070d4e46b6689a3bc27b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2019.01.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><title>Random coefficient continuous systems: Testing for extreme sample path behavior</title><title>Journal of econometrics</title><description>This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive behavior according to specific regions of the parameter space that open up the potential for testing these forms of extreme behavior. A two-stage approach that employs realized volatility is proposed for the continuous system estimation, asymptotic theory is developed, and test statistics to identify the different forms of extreme sample path behavior are proposed. Simulations show that the proposed estimators work well in empirically realistic settings and that the tests have good size and power properties in discriminating characteristics in the data that differ from typical unit root behavior. The theory is extended to cover models where the random persistence parameter is endogenously determined. An empirical application based on daily real S&amp;P 500 index data over 1928–2018 reveals strong evidence against parameter constancy over the whole sample period leading to a long duration of what the model characterizes as extreme behavior in real stock prices.</description><subject>Behavior</subject><subject>Bubble testing</subject><subject>Continuous time models</subject><subject>Discrete time</subject><subject>Explosive path</subject><subject>Extreme behavior</subject><subject>Infill asymptotics</subject><subject>Mathematical models</subject><subject>Parameter estimation</subject><subject>Power</subject><subject>Prices</subject><subject>Random coefficient autoregression</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Stock market indexes</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKEgeGudtEnaehER_4EgiJ5Dmkx2U7bNmrSi394s691cEiZv3sz7EXJOoaBAxVVf9Kj96IeiBNoWQAuA8oAsaFOXuWhafkgWUAHLGdTimJzE2AMAZ021IK9vajR-yLRHa512OE7pPU5unP0cs_gTJxzidfaOMdVWmfUhw-8p4IBZVMN2g9lWTeusw7X6cj6ckiOrNhHP_u4l-Xi4f797yl9eH5_vbl9yzRqY8q61AoVpVGWqrjU1A6qMQiYUb03ZmLai3FqOTNsWajAsfXUiZVFVp8u6q5bkYu-7Df5zTsvJ3s9hTCNlmY5gQlQ8qS73qpXaoHTjLlnafqXmGKW85XXDOEBTJyHfC3XwMQa0chvcoMKPpCB3kGUv_yDLHWQJVCbIqe9m34cp65fDIOOOoUbjAupJGu_-cfgFPYyInQ</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Tao, Yubo</creator><creator>Phillips, Peter C.B.</creator><creator>Yu, Jun</creator><general>Elsevier B.V</general><general>Elsevier Science Publishers</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20190401</creationdate><title>Random coefficient continuous systems: Testing for extreme sample path behavior</title><author>Tao, Yubo ; Phillips, Peter C.B. ; Yu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-b9f6e6d8a3d3b9d7401adae46a59d28d9315ff5e4cf9070d4e46b6689a3bc27b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Behavior</topic><topic>Bubble testing</topic><topic>Continuous time models</topic><topic>Discrete time</topic><topic>Explosive path</topic><topic>Extreme behavior</topic><topic>Infill asymptotics</topic><topic>Mathematical models</topic><topic>Parameter estimation</topic><topic>Power</topic><topic>Prices</topic><topic>Random coefficient autoregression</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Stock market indexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tao, Yubo</creatorcontrib><creatorcontrib>Phillips, Peter C.B.</creatorcontrib><creatorcontrib>Yu, Jun</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tao, Yubo</au><au>Phillips, Peter C.B.</au><au>Yu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random coefficient continuous systems: Testing for extreme sample path behavior</atitle><jtitle>Journal of econometrics</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>209</volume><issue>2</issue><spage>208</spage><epage>237</epage><pages>208-237</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>This paper studies a continuous time dynamic system with a random persistence parameter. The exact discrete time representation is obtained and related to several discrete time random coefficient models currently in the literature. The model distinguishes various forms of unstable and explosive behavior according to specific regions of the parameter space that open up the potential for testing these forms of extreme behavior. A two-stage approach that employs realized volatility is proposed for the continuous system estimation, asymptotic theory is developed, and test statistics to identify the different forms of extreme sample path behavior are proposed. Simulations show that the proposed estimators work well in empirically realistic settings and that the tests have good size and power properties in discriminating characteristics in the data that differ from typical unit root behavior. The theory is extended to cover models where the random persistence parameter is endogenously determined. An empirical application based on daily real S&amp;P 500 index data over 1928–2018 reveals strong evidence against parameter constancy over the whole sample period leading to a long duration of what the model characterizes as extreme behavior in real stock prices.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2019.01.002</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2019-04, Vol.209 (2), p.208-237
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2222646635
source Elsevier ScienceDirect Journals Complete
subjects Behavior
Bubble testing
Continuous time models
Discrete time
Explosive path
Extreme behavior
Infill asymptotics
Mathematical models
Parameter estimation
Power
Prices
Random coefficient autoregression
Random variables
Simulation
Stock market indexes
title Random coefficient continuous systems: Testing for extreme sample path behavior
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A37%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20coefficient%20continuous%20systems:%20Testing%20for%20extreme%20sample%20path%20behavior&rft.jtitle=Journal%20of%20econometrics&rft.au=Tao,%20Yubo&rft.date=2019-04-01&rft.volume=209&rft.issue=2&rft.spage=208&rft.epage=237&rft.pages=208-237&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2019.01.002&rft_dat=%3Cgale_proqu%3EA578450087%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222646635&rft_id=info:pmid/&rft_galeid=A578450087&rft_els_id=S0304407619300053&rfr_iscdi=true