Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations
In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalinatio...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-05, Vol.174, p.768-778 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 778 |
---|---|
container_issue | |
container_start_page | 768 |
container_title | Energy (Oxford) |
container_volume | 174 |
creator | He, W.F. Chen, J.J. Zhen, M.R. Han, D. |
description | In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis.
•An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented. |
doi_str_mv | 10.1016/j.energy.2019.03.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222645498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219304098</els_id><sourcerecordid>2222645498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1EpV5K36ALS2xJsBPHTjZIqKKAVIlNWVv-mfTO1Y0d7KQoPAmPi0tYscAbz1jfOaPxIeSGs5ozLt-dagiQHre6YXyoWVsz1r0gB96rtpKq716SA2slqzohmkvyKucTK0Q_DAfy6-EIaYp-C2ZC95aCiyGWippgzlvGXApP47zghD_NgjHQOFJDj2AWOq_TTH3CJwjUQzZnDDuSt7zARH_gcixaCJXBRI_rhB5HdDvj4Z-HMnnExzX96fJrcjGac4brv_cV-Xb38eH2c3X_9dOX2w_3lWtbsVSKS2WHQSmvLJd2sEIqKTtlWxg4E13TN70S3I69NY4LbqRyVjDv2NiY0TbtFXmz-84pfl8hL_oU11SWz7opR4pODH2hxE65FHNOMOo54WTSpjnTzxnok94z0M8ZaNbq8sNF9n6XQdngCSHp7BCCA48J3KJ9xP8b_AbQWZYN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222645498</pqid></control><display><type>article</type><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><source>Access via ScienceDirect (Elsevier)</source><creator>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</creator><creatorcontrib>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</creatorcontrib><description>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis.
•An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.03.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Compression ; Computer simulation ; Configurations ; Critical parameters ; Dehumidification ; Desalination ; Economic analysis ; Energy conversion ; Energy conversion efficiency ; Evaporators ; Flow rates ; Heat ; Heat exchangers ; Heat pump ; Heat pumps ; Humidification ; Humidification dehumidification desalination system ; Mass flow rate ; Particle swarm optimization ; Particle swarm optimization algorithm ; Pressure ; Pressure ratio ; Temperature effects ; Temperature gradients</subject><ispartof>Energy (Oxford), 2019-05, Vol.174, p.768-778</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</citedby><cites>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>He, W.F.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Zhen, M.R.</creatorcontrib><creatorcontrib>Han, D.</creatorcontrib><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><title>Energy (Oxford)</title><description>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis.
•An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</description><subject>Algorithms</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Critical parameters</subject><subject>Dehumidification</subject><subject>Desalination</subject><subject>Economic analysis</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Evaporators</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Humidification</subject><subject>Humidification dehumidification desalination system</subject><subject>Mass flow rate</subject><subject>Particle swarm optimization</subject><subject>Particle swarm optimization algorithm</subject><subject>Pressure</subject><subject>Pressure ratio</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS1EpV5K36ALS2xJsBPHTjZIqKKAVIlNWVv-mfTO1Y0d7KQoPAmPi0tYscAbz1jfOaPxIeSGs5ozLt-dagiQHre6YXyoWVsz1r0gB96rtpKq716SA2slqzohmkvyKucTK0Q_DAfy6-EIaYp-C2ZC95aCiyGWippgzlvGXApP47zghD_NgjHQOFJDj2AWOq_TTH3CJwjUQzZnDDuSt7zARH_gcixaCJXBRI_rhB5HdDvj4Z-HMnnExzX96fJrcjGac4brv_cV-Xb38eH2c3X_9dOX2w_3lWtbsVSKS2WHQSmvLJd2sEIqKTtlWxg4E13TN70S3I69NY4LbqRyVjDv2NiY0TbtFXmz-84pfl8hL_oU11SWz7opR4pODH2hxE65FHNOMOo54WTSpjnTzxnok94z0M8ZaNbq8sNF9n6XQdngCSHp7BCCA48J3KJ9xP8b_AbQWZYN</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>He, W.F.</creator><creator>Chen, J.J.</creator><creator>Zhen, M.R.</creator><creator>Han, D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190501</creationdate><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><author>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Critical parameters</topic><topic>Dehumidification</topic><topic>Desalination</topic><topic>Economic analysis</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Evaporators</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Humidification</topic><topic>Humidification dehumidification desalination system</topic><topic>Mass flow rate</topic><topic>Particle swarm optimization</topic><topic>Particle swarm optimization algorithm</topic><topic>Pressure</topic><topic>Pressure ratio</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, W.F.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Zhen, M.R.</creatorcontrib><creatorcontrib>Han, D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, W.F.</au><au>Chen, J.J.</au><au>Zhen, M.R.</au><au>Han, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>174</volume><spage>768</spage><epage>778</epage><pages>768-778</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis.
•An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.03.005</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-05, Vol.174, p.768-778 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2222645498 |
source | Access via ScienceDirect (Elsevier) |
subjects | Algorithms Compression Computer simulation Configurations Critical parameters Dehumidification Desalination Economic analysis Energy conversion Energy conversion efficiency Evaporators Flow rates Heat Heat exchangers Heat pump Heat pumps Humidification Humidification dehumidification desalination system Mass flow rate Particle swarm optimization Particle swarm optimization algorithm Pressure Pressure ratio Temperature effects Temperature gradients |
title | Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic,%20economic%20analysis%20and%20optimization%20of%20a%20heat%20pump%20driven%20desalination%20system%20with%20open-air%20humidification%20dehumidification%20configurations&rft.jtitle=Energy%20(Oxford)&rft.au=He,%20W.F.&rft.date=2019-05-01&rft.volume=174&rft.spage=768&rft.epage=778&rft.pages=768-778&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.03.005&rft_dat=%3Cproquest_cross%3E2222645498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222645498&rft_id=info:pmid/&rft_els_id=S0360544219304098&rfr_iscdi=true |