Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations

In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-05, Vol.174, p.768-778
Hauptverfasser: He, W.F., Chen, J.J., Zhen, M.R., Han, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 778
container_issue
container_start_page 768
container_title Energy (Oxford)
container_volume 174
creator He, W.F.
Chen, J.J.
Zhen, M.R.
Han, D.
description In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis. •An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.
doi_str_mv 10.1016/j.energy.2019.03.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222645498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219304098</els_id><sourcerecordid>2222645498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</originalsourceid><addsrcrecordid>eNp9kc1u1TAQhS1EpV5K36ALS2xJsBPHTjZIqKKAVIlNWVv-mfTO1Y0d7KQoPAmPi0tYscAbz1jfOaPxIeSGs5ozLt-dagiQHre6YXyoWVsz1r0gB96rtpKq716SA2slqzohmkvyKucTK0Q_DAfy6-EIaYp-C2ZC95aCiyGWippgzlvGXApP47zghD_NgjHQOFJDj2AWOq_TTH3CJwjUQzZnDDuSt7zARH_gcixaCJXBRI_rhB5HdDvj4Z-HMnnExzX96fJrcjGac4brv_cV-Xb38eH2c3X_9dOX2w_3lWtbsVSKS2WHQSmvLJd2sEIqKTtlWxg4E13TN70S3I69NY4LbqRyVjDv2NiY0TbtFXmz-84pfl8hL_oU11SWz7opR4pODH2hxE65FHNOMOo54WTSpjnTzxnok94z0M8ZaNbq8sNF9n6XQdngCSHp7BCCA48J3KJ9xP8b_AbQWZYN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222645498</pqid></control><display><type>article</type><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><source>Access via ScienceDirect (Elsevier)</source><creator>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</creator><creatorcontrib>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</creatorcontrib><description>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis. •An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.03.005</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Compression ; Computer simulation ; Configurations ; Critical parameters ; Dehumidification ; Desalination ; Economic analysis ; Energy conversion ; Energy conversion efficiency ; Evaporators ; Flow rates ; Heat ; Heat exchangers ; Heat pump ; Heat pumps ; Humidification ; Humidification dehumidification desalination system ; Mass flow rate ; Particle swarm optimization ; Particle swarm optimization algorithm ; Pressure ; Pressure ratio ; Temperature effects ; Temperature gradients</subject><ispartof>Energy (Oxford), 2019-05, Vol.174, p.768-778</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</citedby><cites>FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.03.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>He, W.F.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Zhen, M.R.</creatorcontrib><creatorcontrib>Han, D.</creatorcontrib><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><title>Energy (Oxford)</title><description>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis. •An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</description><subject>Algorithms</subject><subject>Compression</subject><subject>Computer simulation</subject><subject>Configurations</subject><subject>Critical parameters</subject><subject>Dehumidification</subject><subject>Desalination</subject><subject>Economic analysis</subject><subject>Energy conversion</subject><subject>Energy conversion efficiency</subject><subject>Evaporators</subject><subject>Flow rates</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat pump</subject><subject>Heat pumps</subject><subject>Humidification</subject><subject>Humidification dehumidification desalination system</subject><subject>Mass flow rate</subject><subject>Particle swarm optimization</subject><subject>Particle swarm optimization algorithm</subject><subject>Pressure</subject><subject>Pressure ratio</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1TAQhS1EpV5K36ALS2xJsBPHTjZIqKKAVIlNWVv-mfTO1Y0d7KQoPAmPi0tYscAbz1jfOaPxIeSGs5ozLt-dagiQHre6YXyoWVsz1r0gB96rtpKq716SA2slqzohmkvyKucTK0Q_DAfy6-EIaYp-C2ZC95aCiyGWippgzlvGXApP47zghD_NgjHQOFJDj2AWOq_TTH3CJwjUQzZnDDuSt7zARH_gcixaCJXBRI_rhB5HdDvj4Z-HMnnExzX96fJrcjGac4brv_cV-Xb38eH2c3X_9dOX2w_3lWtbsVSKS2WHQSmvLJd2sEIqKTtlWxg4E13TN70S3I69NY4LbqRyVjDv2NiY0TbtFXmz-84pfl8hL_oU11SWz7opR4pODH2hxE65FHNOMOo54WTSpjnTzxnok94z0M8ZaNbq8sNF9n6XQdngCSHp7BCCA48J3KJ9xP8b_AbQWZYN</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>He, W.F.</creator><creator>Chen, J.J.</creator><creator>Zhen, M.R.</creator><creator>Han, D.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190501</creationdate><title>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</title><author>He, W.F. ; Chen, J.J. ; Zhen, M.R. ; Han, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-7167b9977d7b16b9b4676657b3e910452828741bf8bac141a67cb40dc0f2afb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Compression</topic><topic>Computer simulation</topic><topic>Configurations</topic><topic>Critical parameters</topic><topic>Dehumidification</topic><topic>Desalination</topic><topic>Economic analysis</topic><topic>Energy conversion</topic><topic>Energy conversion efficiency</topic><topic>Evaporators</topic><topic>Flow rates</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat pump</topic><topic>Heat pumps</topic><topic>Humidification</topic><topic>Humidification dehumidification desalination system</topic><topic>Mass flow rate</topic><topic>Particle swarm optimization</topic><topic>Particle swarm optimization algorithm</topic><topic>Pressure</topic><topic>Pressure ratio</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, W.F.</creatorcontrib><creatorcontrib>Chen, J.J.</creatorcontrib><creatorcontrib>Zhen, M.R.</creatorcontrib><creatorcontrib>Han, D.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, W.F.</au><au>Chen, J.J.</au><au>Zhen, M.R.</au><au>Han, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>174</volume><spage>768</spage><epage>778</epage><pages>768-778</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this paper, the heat pump is coupled to a humidification dehumidification desalination system, with open-air configurations, to enhance the energy conversion efficiency. After establishing the energetic and entropic equations for all the thermal processes, the correlations between the desalination performance and the critical parameters, including the compression pressure ratio, pinch temperature difference of the condenser, terminal temperature difference of the evaporator, are revealed. Afterwards, the mass flow rate ratio and effectiveness during humidification and dehumidification are treated as the decision variables to optimize the energy conversion efficiency of the heat pump driven desalination system. The simulation results show that the actual top water production and gained-output-ratio of the desalination system reach 88.34 kgh−1 and 3.72 at the balance condition of the humidifier. It is also obtained that raising the compression pressure ratio and reducing the pinch temperature difference of the condenser and terminal temperature difference of the evaporator, can promote the desalination performance. Furthermore, based on the particle swarm optimization algorithm, the best desalination performance, with 151.03 kgh−1 for the water production, and 5.95 for the gained-output-ratio, is optimized within the prescribed range of the decision variables, while the corresponding cost of produced water arrives at 0.015$L−1 through the economic analysis. •An heat pump driven desalination system with open-air humidification dehumidification system is proposed.•Energetic and entropic analysis of the HPDDS is achieved.•Correlations between the critical parameters and the system performance are revealed.•Thermodynamic performance of the HPDDS is optimized based on the PSO algorithm.•Economic performance of the HPDDS is also calculated and presented.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.03.005</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-05, Vol.174, p.768-778
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2222645498
source Access via ScienceDirect (Elsevier)
subjects Algorithms
Compression
Computer simulation
Configurations
Critical parameters
Dehumidification
Desalination
Economic analysis
Energy conversion
Energy conversion efficiency
Evaporators
Flow rates
Heat
Heat exchangers
Heat pump
Heat pumps
Humidification
Humidification dehumidification desalination system
Mass flow rate
Particle swarm optimization
Particle swarm optimization algorithm
Pressure
Pressure ratio
Temperature effects
Temperature gradients
title Thermodynamic, economic analysis and optimization of a heat pump driven desalination system with open-air humidification dehumidification configurations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic,%20economic%20analysis%20and%20optimization%20of%20a%20heat%20pump%20driven%20desalination%20system%20with%20open-air%20humidification%20dehumidification%20configurations&rft.jtitle=Energy%20(Oxford)&rft.au=He,%20W.F.&rft.date=2019-05-01&rft.volume=174&rft.spage=768&rft.epage=778&rft.pages=768-778&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.03.005&rft_dat=%3Cproquest_cross%3E2222645498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222645498&rft_id=info:pmid/&rft_els_id=S0360544219304098&rfr_iscdi=true