pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy
The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sen...
Gespeichert in:
Veröffentlicht in: | Energy technology (Weinheim, Germany) Germany), 2019-05, Vol.7 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 7 |
creator | Xiao, Tianliang Zhang, Qianqian Jiang, Jiaqiao Ma, Jing Liu, Qingqing Lu, Bingxin Liu, Zhaoyue Zhai, Jin |
description | The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy.
A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range. |
doi_str_mv | 10.1002/ente.201800952 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222500448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222500448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhisEEtPYlXMkzhtu0mztEY3CkMZAMM6Vl7ojU5eMpAP1xiPwjDwJmYbGEV9sy99vW38UnccwiAH4JZmGBhziFCCT_Cjq8DhL-gnPhseHOk1Po573KwCIQQoJohNtN5Pvz68n8to3aBo2Q2OreqtLrdi1tiWxe1ovHBpilXVsopevgX8kF7o1GkVsbM07Oa-tYbZiz1hro5uW3TosdfiKadNYltekGhd25obcsj2LTiqsPfV-czd6ucnn40l_-nB7N76a9pWQCe9LuUBM0nIoVMarkRSCFJYyHimUI6oq4BgLiWmZEReoygzKEWKYyEWiIBOiG13s926cfduSb4qV3ToTThY8hARIkjRQgz2lnPXeUVVsnF6ja4sYip27xc7d4uBuEGR7wYeuqf2HLvLZPP_T_gAW8IIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222500448</pqid></control><display><type>article</type><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</creator><creatorcontrib>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</creatorcontrib><description>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy.
A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201800952</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Diodes ; electric energy ; Energy harvesting ; Fluidics ; Ion transport ; ionomers ; nanofluidic diode membranes ; Nanofluids ; pH-resistant ; Rivers ; Salinity ; salinity gradients ; Seawater</subject><ispartof>Energy technology (Weinheim, Germany), 2019-05, Vol.7 (5), p.n/a</ispartof><rights>2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</citedby><cites>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</cites><orcidid>0000-0003-0100-7688 ; 0000-0001-8865-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201800952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201800952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiao, Tianliang</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Jiang, Jiaqiao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Liu, Qingqing</creatorcontrib><creatorcontrib>Lu, Bingxin</creatorcontrib><creatorcontrib>Liu, Zhaoyue</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><title>Energy technology (Weinheim, Germany)</title><description>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy.
A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</description><subject>Diodes</subject><subject>electric energy</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>Ion transport</subject><subject>ionomers</subject><subject>nanofluidic diode membranes</subject><subject>Nanofluids</subject><subject>pH-resistant</subject><subject>Rivers</subject><subject>Salinity</subject><subject>salinity gradients</subject><subject>Seawater</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhisEEtPYlXMkzhtu0mztEY3CkMZAMM6Vl7ojU5eMpAP1xiPwjDwJmYbGEV9sy99vW38UnccwiAH4JZmGBhziFCCT_Cjq8DhL-gnPhseHOk1Po573KwCIQQoJohNtN5Pvz68n8to3aBo2Q2OreqtLrdi1tiWxe1ovHBpilXVsopevgX8kF7o1GkVsbM07Oa-tYbZiz1hro5uW3TosdfiKadNYltekGhd25obcsj2LTiqsPfV-czd6ucnn40l_-nB7N76a9pWQCe9LuUBM0nIoVMarkRSCFJYyHimUI6oq4BgLiWmZEReoygzKEWKYyEWiIBOiG13s926cfduSb4qV3ToTThY8hARIkjRQgz2lnPXeUVVsnF6ja4sYip27xc7d4uBuEGR7wYeuqf2HLvLZPP_T_gAW8IIE</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Xiao, Tianliang</creator><creator>Zhang, Qianqian</creator><creator>Jiang, Jiaqiao</creator><creator>Ma, Jing</creator><creator>Liu, Qingqing</creator><creator>Lu, Bingxin</creator><creator>Liu, Zhaoyue</creator><creator>Zhai, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0100-7688</orcidid><orcidid>https://orcid.org/0000-0001-8865-2019</orcidid></search><sort><creationdate>201905</creationdate><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><author>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Diodes</topic><topic>electric energy</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>Ion transport</topic><topic>ionomers</topic><topic>nanofluidic diode membranes</topic><topic>Nanofluids</topic><topic>pH-resistant</topic><topic>Rivers</topic><topic>Salinity</topic><topic>salinity gradients</topic><topic>Seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Tianliang</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Jiang, Jiaqiao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Liu, Qingqing</creatorcontrib><creatorcontrib>Lu, Bingxin</creatorcontrib><creatorcontrib>Liu, Zhaoyue</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Tianliang</au><au>Zhang, Qianqian</au><au>Jiang, Jiaqiao</au><au>Ma, Jing</au><au>Liu, Qingqing</au><au>Lu, Bingxin</au><au>Liu, Zhaoyue</au><au>Zhai, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>7</volume><issue>5</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy.
A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201800952</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0100-7688</orcidid><orcidid>https://orcid.org/0000-0001-8865-2019</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2019-05, Vol.7 (5), p.n/a |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_2222500448 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Diodes electric energy Energy harvesting Fluidics Ion transport ionomers nanofluidic diode membranes Nanofluids pH-resistant Rivers Salinity salinity gradients Seawater |
title | pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%E2%80%90Resistant%20Nanofluidic%20Diode%20Membrane%20for%20High%E2%80%90Performance%20Conversion%20of%20Salinity%20Gradient%20into%20Electric%20Energy&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Xiao,%20Tianliang&rft.date=2019-05&rft.volume=7&rft.issue=5&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201800952&rft_dat=%3Cproquest_cross%3E2222500448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222500448&rft_id=info:pmid/&rfr_iscdi=true |