pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy

The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy technology (Weinheim, Germany) Germany), 2019-05, Vol.7 (5), p.n/a
Hauptverfasser: Xiao, Tianliang, Zhang, Qianqian, Jiang, Jiaqiao, Ma, Jing, Liu, Qingqing, Lu, Bingxin, Liu, Zhaoyue, Zhai, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page
container_title Energy technology (Weinheim, Germany)
container_volume 7
creator Xiao, Tianliang
Zhang, Qianqian
Jiang, Jiaqiao
Ma, Jing
Liu, Qingqing
Lu, Bingxin
Liu, Zhaoyue
Zhai, Jin
description The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy. A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.
doi_str_mv 10.1002/ente.201800952
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2222500448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2222500448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</originalsourceid><addsrcrecordid>eNqFkMFOwzAMhisEEtPYlXMkzhtu0mztEY3CkMZAMM6Vl7ojU5eMpAP1xiPwjDwJmYbGEV9sy99vW38UnccwiAH4JZmGBhziFCCT_Cjq8DhL-gnPhseHOk1Po573KwCIQQoJohNtN5Pvz68n8to3aBo2Q2OreqtLrdi1tiWxe1ovHBpilXVsopevgX8kF7o1GkVsbM07Oa-tYbZiz1hro5uW3TosdfiKadNYltekGhd25obcsj2LTiqsPfV-czd6ucnn40l_-nB7N76a9pWQCe9LuUBM0nIoVMarkRSCFJYyHimUI6oq4BgLiWmZEReoygzKEWKYyEWiIBOiG13s926cfduSb4qV3ToTThY8hARIkjRQgz2lnPXeUVVsnF6ja4sYip27xc7d4uBuEGR7wYeuqf2HLvLZPP_T_gAW8IIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222500448</pqid></control><display><type>article</type><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</creator><creatorcontrib>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</creatorcontrib><description>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy. A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201800952</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Diodes ; electric energy ; Energy harvesting ; Fluidics ; Ion transport ; ionomers ; nanofluidic diode membranes ; Nanofluids ; pH-resistant ; Rivers ; Salinity ; salinity gradients ; Seawater</subject><ispartof>Energy technology (Weinheim, Germany), 2019-05, Vol.7 (5), p.n/a</ispartof><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</citedby><cites>FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</cites><orcidid>0000-0003-0100-7688 ; 0000-0001-8865-2019</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fente.201800952$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fente.201800952$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiao, Tianliang</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Jiang, Jiaqiao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Liu, Qingqing</creatorcontrib><creatorcontrib>Lu, Bingxin</creatorcontrib><creatorcontrib>Liu, Zhaoyue</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><title>Energy technology (Weinheim, Germany)</title><description>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy. A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</description><subject>Diodes</subject><subject>electric energy</subject><subject>Energy harvesting</subject><subject>Fluidics</subject><subject>Ion transport</subject><subject>ionomers</subject><subject>nanofluidic diode membranes</subject><subject>Nanofluids</subject><subject>pH-resistant</subject><subject>Rivers</subject><subject>Salinity</subject><subject>salinity gradients</subject><subject>Seawater</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFOwzAMhisEEtPYlXMkzhtu0mztEY3CkMZAMM6Vl7ojU5eMpAP1xiPwjDwJmYbGEV9sy99vW38UnccwiAH4JZmGBhziFCCT_Cjq8DhL-gnPhseHOk1Po573KwCIQQoJohNtN5Pvz68n8to3aBo2Q2OreqtLrdi1tiWxe1ovHBpilXVsopevgX8kF7o1GkVsbM07Oa-tYbZiz1hro5uW3TosdfiKadNYltekGhd25obcsj2LTiqsPfV-czd6ucnn40l_-nB7N76a9pWQCe9LuUBM0nIoVMarkRSCFJYyHimUI6oq4BgLiWmZEReoygzKEWKYyEWiIBOiG13s926cfduSb4qV3ToTThY8hARIkjRQgz2lnPXeUVVsnF6ja4sYip27xc7d4uBuEGR7wYeuqf2HLvLZPP_T_gAW8IIE</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Xiao, Tianliang</creator><creator>Zhang, Qianqian</creator><creator>Jiang, Jiaqiao</creator><creator>Ma, Jing</creator><creator>Liu, Qingqing</creator><creator>Lu, Bingxin</creator><creator>Liu, Zhaoyue</creator><creator>Zhai, Jin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0100-7688</orcidid><orcidid>https://orcid.org/0000-0001-8865-2019</orcidid></search><sort><creationdate>201905</creationdate><title>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</title><author>Xiao, Tianliang ; Zhang, Qianqian ; Jiang, Jiaqiao ; Ma, Jing ; Liu, Qingqing ; Lu, Bingxin ; Liu, Zhaoyue ; Zhai, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3542-55baa48d63c92f7533ecad517ca57eff02a135a8d9e23acd90d7aa7ef5b4c0933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Diodes</topic><topic>electric energy</topic><topic>Energy harvesting</topic><topic>Fluidics</topic><topic>Ion transport</topic><topic>ionomers</topic><topic>nanofluidic diode membranes</topic><topic>Nanofluids</topic><topic>pH-resistant</topic><topic>Rivers</topic><topic>Salinity</topic><topic>salinity gradients</topic><topic>Seawater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Tianliang</creatorcontrib><creatorcontrib>Zhang, Qianqian</creatorcontrib><creatorcontrib>Jiang, Jiaqiao</creatorcontrib><creatorcontrib>Ma, Jing</creatorcontrib><creatorcontrib>Liu, Qingqing</creatorcontrib><creatorcontrib>Lu, Bingxin</creatorcontrib><creatorcontrib>Liu, Zhaoyue</creatorcontrib><creatorcontrib>Zhai, Jin</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Tianliang</au><au>Zhang, Qianqian</au><au>Jiang, Jiaqiao</au><au>Ma, Jing</au><au>Liu, Qingqing</au><au>Lu, Bingxin</au><au>Liu, Zhaoyue</au><au>Zhai, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>7</volume><issue>5</issue><epage>n/a</epage><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>The harvesting of the energy stored in the salinity gradient between seawater and river water by a membrane‐scale nanofluidic diode for sustainable generation of electricity is attracting significant attention in recent years. However, the performance of previously reported nanofluidic diodes is sensitive to the pH conditions, which restricts their potential applications in wider fields with variable pH values. Herein, a pH‐resistant membrane‐scale nanofluidic diode with a high ion rectification ratio of ≈85 that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is reported. This pH‐resistant ion rectification is explained quantitatively by a theoretical calculation based on the Poisson and Nernst–Plank equations. The nanofluidic diode membrane is integrated into a power generation device to harvest the energy stored in the salinity gradient. By mixing the simulated seawater (0.5 m KCl) and river water (0.01 m KCl) through the membrane, the device outputs an impressive power density of 3.15 W m−2 and demonstrates high stability over a wider pH range. The membrane‐scale nanofluidic diode provides a pH‐resistant platform to control the ion transport and to convert the salinity gradient into electric energy. A pH‐resistant membrane‐scale nanofluidic diode that demonstrates a stable ion rectification property over a wider pH range from 4 to 10 is developed. The nanofluidic diode membrane achieves high‐performance conversion of salinity gradient into electric energy, which outputs a stable power density over a wider pH range.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201800952</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0100-7688</orcidid><orcidid>https://orcid.org/0000-0001-8865-2019</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2019-05, Vol.7 (5), p.n/a
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2222500448
source Wiley Online Library Journals Frontfile Complete
subjects Diodes
electric energy
Energy harvesting
Fluidics
Ion transport
ionomers
nanofluidic diode membranes
Nanofluids
pH-resistant
Rivers
Salinity
salinity gradients
Seawater
title pH‐Resistant Nanofluidic Diode Membrane for High‐Performance Conversion of Salinity Gradient into Electric Energy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pH%E2%80%90Resistant%20Nanofluidic%20Diode%20Membrane%20for%20High%E2%80%90Performance%20Conversion%20of%20Salinity%20Gradient%20into%20Electric%20Energy&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Xiao,%20Tianliang&rft.date=2019-05&rft.volume=7&rft.issue=5&rft.epage=n/a&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201800952&rft_dat=%3Cproquest_cross%3E2222500448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222500448&rft_id=info:pmid/&rfr_iscdi=true