Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection
We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2019-05, Vol.31 (10), p.723-726 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 10 |
container_start_page | 723 |
container_title | IEEE photonics technology letters |
container_volume | 31 |
creator | Komanec, M. Suslov, D. Zvanovec, S. Chen, Y. Bradley, T. Sandoghchi, S. R. Numkam Fokoua, E. R. Jasion, G. T. Petrovich, M. N. Poletti, F. Richardson, D. J. Slavik, R. |
description | We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface. |
doi_str_mv | 10.1109/LPT.2019.2902635 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2222202308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8657930</ieee_id><sourcerecordid>2222202308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8BnztzSdqkjzqcGxQVnc-h-QWdtZlph_jfm9LhPdwvPnfHfRG6BrIAIOVd9bpdUALlgpaEFiw_QTMoOWQEBD9NOUk5AMvP0UXf7wgBnjM-Q89V-Mmq0Pe47iwei4fafGZvzrfODE3o8Dq0bWovQ3R4CPh9SGAdLV412kW86QYXTei6ib5EZ75ue3d1jHP0sXrcLtdZ9fK0Wd5XmWG5GDJZeikEq3nhGXhZlEA108Ya5q3k1GlqQFjQEoxO3jmvBZHU5oJbY71kc3Q77d3H8H1w_aB24RC7dFLR0QhlZKTIRJmYPozOq31svur4q4CoUTWVVFOjauqoWhq5mUYa59w_LotclIywP9-AaC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222202308</pqid></control><display><type>article</type><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</creator><creatorcontrib>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</creatorcontrib><description>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2019.2902635</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adapters ; Coatings ; Core loss ; Couplings ; Deformation ; Gluing ; High temperature ; Insertion loss ; Loss measurement ; Optical components ; optical fiber connecting ; optical fibers ; Optical interconnections ; Optical polarization ; Photonic band gaps ; Photonics ; Splicing ; Stability ; Thin films</subject><ispartof>IEEE photonics technology letters, 2019-05, Vol.31 (10), p.723-726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</citedby><cites>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</cites><orcidid>0000-0001-7626-7930 ; 0000-0002-4092-6970 ; 0000-0002-1000-3083 ; 0000-0002-3905-5901 ; 0000-0001-6568-5811 ; 0000-0002-7902-2143 ; 0000-0002-9336-4262 ; 0000-0001-5030-6479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8657930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8657930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Komanec, M.</creatorcontrib><creatorcontrib>Suslov, D.</creatorcontrib><creatorcontrib>Zvanovec, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Bradley, T.</creatorcontrib><creatorcontrib>Sandoghchi, S. R.</creatorcontrib><creatorcontrib>Numkam Fokoua, E. R.</creatorcontrib><creatorcontrib>Jasion, G. T.</creatorcontrib><creatorcontrib>Petrovich, M. N.</creatorcontrib><creatorcontrib>Poletti, F.</creatorcontrib><creatorcontrib>Richardson, D. J.</creatorcontrib><creatorcontrib>Slavik, R.</creatorcontrib><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</description><subject>Adapters</subject><subject>Coatings</subject><subject>Core loss</subject><subject>Couplings</subject><subject>Deformation</subject><subject>Gluing</subject><subject>High temperature</subject><subject>Insertion loss</subject><subject>Loss measurement</subject><subject>Optical components</subject><subject>optical fiber connecting</subject><subject>optical fibers</subject><subject>Optical interconnections</subject><subject>Optical polarization</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Splicing</subject><subject>Stability</subject><subject>Thin films</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8BnztzSdqkjzqcGxQVnc-h-QWdtZlph_jfm9LhPdwvPnfHfRG6BrIAIOVd9bpdUALlgpaEFiw_QTMoOWQEBD9NOUk5AMvP0UXf7wgBnjM-Q89V-Mmq0Pe47iwei4fafGZvzrfODE3o8Dq0bWovQ3R4CPh9SGAdLV412kW86QYXTei6ib5EZ75ue3d1jHP0sXrcLtdZ9fK0Wd5XmWG5GDJZeikEq3nhGXhZlEA108Ya5q3k1GlqQFjQEoxO3jmvBZHU5oJbY71kc3Q77d3H8H1w_aB24RC7dFLR0QhlZKTIRJmYPozOq31svur4q4CoUTWVVFOjauqoWhq5mUYa59w_LotclIywP9-AaC4</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Komanec, M.</creator><creator>Suslov, D.</creator><creator>Zvanovec, S.</creator><creator>Chen, Y.</creator><creator>Bradley, T.</creator><creator>Sandoghchi, S. R.</creator><creator>Numkam Fokoua, E. R.</creator><creator>Jasion, G. T.</creator><creator>Petrovich, M. N.</creator><creator>Poletti, F.</creator><creator>Richardson, D. J.</creator><creator>Slavik, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7626-7930</orcidid><orcidid>https://orcid.org/0000-0002-4092-6970</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-3905-5901</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0002-7902-2143</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><orcidid>https://orcid.org/0000-0001-5030-6479</orcidid></search><sort><creationdate>20190515</creationdate><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><author>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adapters</topic><topic>Coatings</topic><topic>Core loss</topic><topic>Couplings</topic><topic>Deformation</topic><topic>Gluing</topic><topic>High temperature</topic><topic>Insertion loss</topic><topic>Loss measurement</topic><topic>Optical components</topic><topic>optical fiber connecting</topic><topic>optical fibers</topic><topic>Optical interconnections</topic><topic>Optical polarization</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Splicing</topic><topic>Stability</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Komanec, M.</creatorcontrib><creatorcontrib>Suslov, D.</creatorcontrib><creatorcontrib>Zvanovec, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Bradley, T.</creatorcontrib><creatorcontrib>Sandoghchi, S. R.</creatorcontrib><creatorcontrib>Numkam Fokoua, E. R.</creatorcontrib><creatorcontrib>Jasion, G. T.</creatorcontrib><creatorcontrib>Petrovich, M. N.</creatorcontrib><creatorcontrib>Poletti, F.</creatorcontrib><creatorcontrib>Richardson, D. J.</creatorcontrib><creatorcontrib>Slavik, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komanec, M.</au><au>Suslov, D.</au><au>Zvanovec, S.</au><au>Chen, Y.</au><au>Bradley, T.</au><au>Sandoghchi, S. R.</au><au>Numkam Fokoua, E. R.</au><au>Jasion, G. T.</au><au>Petrovich, M. N.</au><au>Poletti, F.</au><au>Richardson, D. J.</au><au>Slavik, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>31</volume><issue>10</issue><spage>723</spage><epage>726</epage><pages>723-726</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2019.2902635</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7626-7930</orcidid><orcidid>https://orcid.org/0000-0002-4092-6970</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-3905-5901</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0002-7902-2143</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><orcidid>https://orcid.org/0000-0001-5030-6479</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2019-05, Vol.31 (10), p.723-726 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_proquest_journals_2222202308 |
source | IEEE Electronic Library (IEL) |
subjects | Adapters Coatings Core loss Couplings Deformation Gluing High temperature Insertion loss Loss measurement Optical components optical fiber connecting optical fibers Optical interconnections Optical polarization Photonic band gaps Photonics Splicing Stability Thin films |
title | Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Loss%20and%20Low-Back-Reflection%20Hollow-Core%20to%20Standard%20Fiber%20Interconnection&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Komanec,%20M.&rft.date=2019-05-15&rft.volume=31&rft.issue=10&rft.spage=723&rft.epage=726&rft.pages=723-726&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2019.2902635&rft_dat=%3Cproquest_RIE%3E2222202308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222202308&rft_id=info:pmid/&rft_ieee_id=8657930&rfr_iscdi=true |