Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection

We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2019-05, Vol.31 (10), p.723-726
Hauptverfasser: Komanec, M., Suslov, D., Zvanovec, S., Chen, Y., Bradley, T., Sandoghchi, S. R., Numkam Fokoua, E. R., Jasion, G. T., Petrovich, M. N., Poletti, F., Richardson, D. J., Slavik, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 726
container_issue 10
container_start_page 723
container_title IEEE photonics technology letters
container_volume 31
creator Komanec, M.
Suslov, D.
Zvanovec, S.
Chen, Y.
Bradley, T.
Sandoghchi, S. R.
Numkam Fokoua, E. R.
Jasion, G. T.
Petrovich, M. N.
Poletti, F.
Richardson, D. J.
Slavik, R.
description We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.
doi_str_mv 10.1109/LPT.2019.2902635
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2222202308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8657930</ieee_id><sourcerecordid>2222202308</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8BnztzSdqkjzqcGxQVnc-h-QWdtZlph_jfm9LhPdwvPnfHfRG6BrIAIOVd9bpdUALlgpaEFiw_QTMoOWQEBD9NOUk5AMvP0UXf7wgBnjM-Q89V-Mmq0Pe47iwei4fafGZvzrfODE3o8Dq0bWovQ3R4CPh9SGAdLV412kW86QYXTei6ib5EZ75ue3d1jHP0sXrcLtdZ9fK0Wd5XmWG5GDJZeikEq3nhGXhZlEA108Ya5q3k1GlqQFjQEoxO3jmvBZHU5oJbY71kc3Q77d3H8H1w_aB24RC7dFLR0QhlZKTIRJmYPozOq31svur4q4CoUTWVVFOjauqoWhq5mUYa59w_LotclIywP9-AaC4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222202308</pqid></control><display><type>article</type><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><source>IEEE Electronic Library (IEL)</source><creator>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</creator><creatorcontrib>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</creatorcontrib><description>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2019.2902635</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adapters ; Coatings ; Core loss ; Couplings ; Deformation ; Gluing ; High temperature ; Insertion loss ; Loss measurement ; Optical components ; optical fiber connecting ; optical fibers ; Optical interconnections ; Optical polarization ; Photonic band gaps ; Photonics ; Splicing ; Stability ; Thin films</subject><ispartof>IEEE photonics technology letters, 2019-05, Vol.31 (10), p.723-726</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</citedby><cites>FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</cites><orcidid>0000-0001-7626-7930 ; 0000-0002-4092-6970 ; 0000-0002-1000-3083 ; 0000-0002-3905-5901 ; 0000-0001-6568-5811 ; 0000-0002-7902-2143 ; 0000-0002-9336-4262 ; 0000-0001-5030-6479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8657930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8657930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Komanec, M.</creatorcontrib><creatorcontrib>Suslov, D.</creatorcontrib><creatorcontrib>Zvanovec, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Bradley, T.</creatorcontrib><creatorcontrib>Sandoghchi, S. R.</creatorcontrib><creatorcontrib>Numkam Fokoua, E. R.</creatorcontrib><creatorcontrib>Jasion, G. T.</creatorcontrib><creatorcontrib>Petrovich, M. N.</creatorcontrib><creatorcontrib>Poletti, F.</creatorcontrib><creatorcontrib>Richardson, D. J.</creatorcontrib><creatorcontrib>Slavik, R.</creatorcontrib><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</description><subject>Adapters</subject><subject>Coatings</subject><subject>Core loss</subject><subject>Couplings</subject><subject>Deformation</subject><subject>Gluing</subject><subject>High temperature</subject><subject>Insertion loss</subject><subject>Loss measurement</subject><subject>Optical components</subject><subject>optical fiber connecting</subject><subject>optical fibers</subject><subject>Optical interconnections</subject><subject>Optical polarization</subject><subject>Photonic band gaps</subject><subject>Photonics</subject><subject>Splicing</subject><subject>Stability</subject><subject>Thin films</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8BnztzSdqkjzqcGxQVnc-h-QWdtZlph_jfm9LhPdwvPnfHfRG6BrIAIOVd9bpdUALlgpaEFiw_QTMoOWQEBD9NOUk5AMvP0UXf7wgBnjM-Q89V-Mmq0Pe47iwei4fafGZvzrfODE3o8Dq0bWovQ3R4CPh9SGAdLV412kW86QYXTei6ib5EZ75ue3d1jHP0sXrcLtdZ9fK0Wd5XmWG5GDJZeikEq3nhGXhZlEA108Ya5q3k1GlqQFjQEoxO3jmvBZHU5oJbY71kc3Q77d3H8H1w_aB24RC7dFLR0QhlZKTIRJmYPozOq31svur4q4CoUTWVVFOjauqoWhq5mUYa59w_LotclIywP9-AaC4</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Komanec, M.</creator><creator>Suslov, D.</creator><creator>Zvanovec, S.</creator><creator>Chen, Y.</creator><creator>Bradley, T.</creator><creator>Sandoghchi, S. R.</creator><creator>Numkam Fokoua, E. R.</creator><creator>Jasion, G. T.</creator><creator>Petrovich, M. N.</creator><creator>Poletti, F.</creator><creator>Richardson, D. J.</creator><creator>Slavik, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7626-7930</orcidid><orcidid>https://orcid.org/0000-0002-4092-6970</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-3905-5901</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0002-7902-2143</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><orcidid>https://orcid.org/0000-0001-5030-6479</orcidid></search><sort><creationdate>20190515</creationdate><title>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</title><author>Komanec, M. ; Suslov, D. ; Zvanovec, S. ; Chen, Y. ; Bradley, T. ; Sandoghchi, S. R. ; Numkam Fokoua, E. R. ; Jasion, G. T. ; Petrovich, M. N. ; Poletti, F. ; Richardson, D. J. ; Slavik, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-89f8773a46f31f86912b3bcdc3fd842eb2c17d1b81cb1b8eefb7082d574dcdf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adapters</topic><topic>Coatings</topic><topic>Core loss</topic><topic>Couplings</topic><topic>Deformation</topic><topic>Gluing</topic><topic>High temperature</topic><topic>Insertion loss</topic><topic>Loss measurement</topic><topic>Optical components</topic><topic>optical fiber connecting</topic><topic>optical fibers</topic><topic>Optical interconnections</topic><topic>Optical polarization</topic><topic>Photonic band gaps</topic><topic>Photonics</topic><topic>Splicing</topic><topic>Stability</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Komanec, M.</creatorcontrib><creatorcontrib>Suslov, D.</creatorcontrib><creatorcontrib>Zvanovec, S.</creatorcontrib><creatorcontrib>Chen, Y.</creatorcontrib><creatorcontrib>Bradley, T.</creatorcontrib><creatorcontrib>Sandoghchi, S. R.</creatorcontrib><creatorcontrib>Numkam Fokoua, E. R.</creatorcontrib><creatorcontrib>Jasion, G. T.</creatorcontrib><creatorcontrib>Petrovich, M. N.</creatorcontrib><creatorcontrib>Poletti, F.</creatorcontrib><creatorcontrib>Richardson, D. J.</creatorcontrib><creatorcontrib>Slavik, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Komanec, M.</au><au>Suslov, D.</au><au>Zvanovec, S.</au><au>Chen, Y.</au><au>Bradley, T.</au><au>Sandoghchi, S. R.</au><au>Numkam Fokoua, E. R.</au><au>Jasion, G. T.</au><au>Petrovich, M. N.</au><au>Poletti, F.</au><au>Richardson, D. J.</au><au>Slavik, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2019-05-15</date><risdate>2019</risdate><volume>31</volume><issue>10</issue><spage>723</spage><epage>726</epage><pages>723-726</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>We present a new approach to permanently inter-connect hollow-core fiber (HCF) to solid-core fiber, which does not involve fusion splicing. Our approach is based on a modification of the glue-based fiber-array technology routinely used for fiber pigtailing of planar lightwave circuits. The resulting interconnection provides for a low insertion loss due to the fact that the HCF microstructure is not deformed during the gluing (low temperature) process that is almost impossible to achieve with the standard (high temperature) fusion splicing method. Furthermore, this low-temperature technique enables the deposition and preservation of thin films deposited at the solid-to-hollow core fiber interface, allowing for additional functionality without the introduction of extra losses or any increase in complexity. To demonstrate this, we have applied an anti-reflection (AR) coating. A further feature of our approach is the ability to control very precisely the length of the graded-index (GRIN) fiber mode field (MF) adapter inserted in between the standard single-mode fiber (SMF-28) and the HCF. We show experimentally how the length of the GRIN fiber MF adapter influences the coupling between the SMF-28 and the fundamental as well as the higher-order modes of the HCF. We coupled between SMF-28 [10 μm mode field diameter (MFD)] and the fundamental mode of a 19-cell hollow-core photonic bandgap fiber (HC-PBGF, 21.1 μm MFD) with the lowest-ever reported insertion loss of 0.30dB per interface.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2019.2902635</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-7626-7930</orcidid><orcidid>https://orcid.org/0000-0002-4092-6970</orcidid><orcidid>https://orcid.org/0000-0002-1000-3083</orcidid><orcidid>https://orcid.org/0000-0002-3905-5901</orcidid><orcidid>https://orcid.org/0000-0001-6568-5811</orcidid><orcidid>https://orcid.org/0000-0002-7902-2143</orcidid><orcidid>https://orcid.org/0000-0002-9336-4262</orcidid><orcidid>https://orcid.org/0000-0001-5030-6479</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2019-05, Vol.31 (10), p.723-726
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_journals_2222202308
source IEEE Electronic Library (IEL)
subjects Adapters
Coatings
Core loss
Couplings
Deformation
Gluing
High temperature
Insertion loss
Loss measurement
Optical components
optical fiber connecting
optical fibers
Optical interconnections
Optical polarization
Photonic band gaps
Photonics
Splicing
Stability
Thin films
title Low-Loss and Low-Back-Reflection Hollow-Core to Standard Fiber Interconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Loss%20and%20Low-Back-Reflection%20Hollow-Core%20to%20Standard%20Fiber%20Interconnection&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Komanec,%20M.&rft.date=2019-05-15&rft.volume=31&rft.issue=10&rft.spage=723&rft.epage=726&rft.pages=723-726&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2019.2902635&rft_dat=%3Cproquest_RIE%3E2222202308%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222202308&rft_id=info:pmid/&rft_ieee_id=8657930&rfr_iscdi=true