Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors
MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field (...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2019-05, Vol.30 (10), p.9888-9896 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9896 |
---|---|
container_issue | 10 |
container_start_page | 9888 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 30 |
creator | Zhao, Qian Gong, Chuangchuang Zhang, Pan Liu, Yishan Wang, Yao Hao, Liang Zhu, Enlong Zhu, Zheng |
description | MgB
2
bulks codoped with graphene and nickel with a composition of Mg
1−x
Ni
x
B
1.9
G
0.1
(x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density (
J
c
) and irreversibility field (
H
irr
) of MgB
2
has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB
2
microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the
J
c
of MgB
2
bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi
2.5
B
2
nano-inclusions is expected to enhance the
J
c
value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi
2.5
B
2
, MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB
2
grains and more lattice defects are further required to increase the flux pinning centers. |
doi_str_mv | 10.1007/s10854-019-01326-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221563074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221563074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWmOq_gFq14UvIU2TbpZ1qQmrbBn_7jZreDNwzAw8zwD8wJwTvAlwVhcJYKrgiNMZC5GSyQPwIwUgiFe0fdDMMOyEIgXlB6Dk5TWGOOSs2oGvhe-3myTSzBYOKwM1AG1oXe-g8Zao4fdvIt1vzLewNq30Nc-oGcHg9_Nnc-G9xl0X27Y7gkd3eB0vYF6jNH4AbbGp90yw0_dNYVp7E3MWjvqIcR0Co5svUnm7LfPwdvd7evNA1q-3D_eLJZIUy4H1GhGjSyr0hLKGs64tE3JRSOLQmojLW2YFKTUghLDpK6poG2baYuFzkDL5uBiutvH8DmaNKh1GGP-PylKKSlKhgXPFJ0oHUNK0VjVR_dRx60iWO3CVlPYKoet9mErmSU2SSnDvjPx7_Q_1g-aNYPd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221563074</pqid></control><display><type>article</type><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><source>SpringerNature Journals</source><creator>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</creator><creatorcontrib>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</creatorcontrib><description>MgB
2
bulks codoped with graphene and nickel with a composition of Mg
1−x
Ni
x
B
1.9
G
0.1
(x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density (
J
c
) and irreversibility field (
H
irr
) of MgB
2
has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB
2
microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the
J
c
of MgB
2
bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi
2.5
B
2
nano-inclusions is expected to enhance the
J
c
value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi
2.5
B
2
, MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB
2
grains and more lattice defects are further required to increase the flux pinning centers.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01326-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boron ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Connectivity ; Critical current density ; Crystal defects ; Doping ; Flux pinning ; Grain boundaries ; Graphene ; Inclusions ; Magnesium compounds ; Materials Science ; Mechanical engineering ; Microscopy ; Nickel ; Optical and Electronic Materials ; Porosity ; R&D ; Research & development ; Substitution reactions</subject><ispartof>Journal of materials science. Materials in electronics, 2019-05, Vol.30 (10), p.9888-9896</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</citedby><cites>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01326-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01326-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Gong, Chuangchuang</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Liu, Yishan</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Hao, Liang</creatorcontrib><creatorcontrib>Zhu, Enlong</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>MgB
2
bulks codoped with graphene and nickel with a composition of Mg
1−x
Ni
x
B
1.9
G
0.1
(x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density (
J
c
) and irreversibility field (
H
irr
) of MgB
2
has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB
2
microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the
J
c
of MgB
2
bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi
2.5
B
2
nano-inclusions is expected to enhance the
J
c
value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi
2.5
B
2
, MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB
2
grains and more lattice defects are further required to increase the flux pinning centers.</description><subject>Boron</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Connectivity</subject><subject>Critical current density</subject><subject>Crystal defects</subject><subject>Doping</subject><subject>Flux pinning</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Inclusions</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Mechanical engineering</subject><subject>Microscopy</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>R&D</subject><subject>Research & development</subject><subject>Substitution reactions</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWmOq_gFq14UvIU2TbpZ1qQmrbBn_7jZreDNwzAw8zwD8wJwTvAlwVhcJYKrgiNMZC5GSyQPwIwUgiFe0fdDMMOyEIgXlB6Dk5TWGOOSs2oGvhe-3myTSzBYOKwM1AG1oXe-g8Zao4fdvIt1vzLewNq30Nc-oGcHg9_Nnc-G9xl0X27Y7gkd3eB0vYF6jNH4AbbGp90yw0_dNYVp7E3MWjvqIcR0Co5svUnm7LfPwdvd7evNA1q-3D_eLJZIUy4H1GhGjSyr0hLKGs64tE3JRSOLQmojLW2YFKTUghLDpK6poG2baYuFzkDL5uBiutvH8DmaNKh1GGP-PylKKSlKhgXPFJ0oHUNK0VjVR_dRx60iWO3CVlPYKoet9mErmSU2SSnDvjPx7_Q_1g-aNYPd</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhao, Qian</creator><creator>Gong, Chuangchuang</creator><creator>Zhang, Pan</creator><creator>Liu, Yishan</creator><creator>Wang, Yao</creator><creator>Hao, Liang</creator><creator>Zhu, Enlong</creator><creator>Zhu, Zheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190501</creationdate><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><author>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Connectivity</topic><topic>Critical current density</topic><topic>Crystal defects</topic><topic>Doping</topic><topic>Flux pinning</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Inclusions</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Mechanical engineering</topic><topic>Microscopy</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>R&D</topic><topic>Research & development</topic><topic>Substitution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Gong, Chuangchuang</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Liu, Yishan</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Hao, Liang</creatorcontrib><creatorcontrib>Zhu, Enlong</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qian</au><au>Gong, Chuangchuang</au><au>Zhang, Pan</au><au>Liu, Yishan</au><au>Wang, Yao</au><au>Hao, Liang</au><au>Zhu, Enlong</au><au>Zhu, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>30</volume><issue>10</issue><spage>9888</spage><epage>9896</epage><pages>9888-9896</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>MgB
2
bulks codoped with graphene and nickel with a composition of Mg
1−x
Ni
x
B
1.9
G
0.1
(x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density (
J
c
) and irreversibility field (
H
irr
) of MgB
2
has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB
2
microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the
J
c
of MgB
2
bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi
2.5
B
2
nano-inclusions is expected to enhance the
J
c
value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi
2.5
B
2
, MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB
2
grains and more lattice defects are further required to increase the flux pinning centers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01326-9</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2019-05, Vol.30 (10), p.9888-9896 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2221563074 |
source | SpringerNature Journals |
subjects | Boron Carbon Characterization and Evaluation of Materials Chemistry and Materials Science Connectivity Critical current density Crystal defects Doping Flux pinning Grain boundaries Graphene Inclusions Magnesium compounds Materials Science Mechanical engineering Microscopy Nickel Optical and Electronic Materials Porosity R&D Research & development Substitution reactions |
title | Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A55%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20co-doping%20effect%20of%20graphene%20and%20nano-Ni%20on%20grain%20connectivity%20and%20critical%20current%20density%20in%20MgB2%20superconductors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhao,%20Qian&rft.date=2019-05-01&rft.volume=30&rft.issue=10&rft.spage=9888&rft.epage=9896&rft.pages=9888-9896&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01326-9&rft_dat=%3Cproquest_cross%3E2221563074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221563074&rft_id=info:pmid/&rfr_iscdi=true |