Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors

MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in electronics 2019-05, Vol.30 (10), p.9888-9896
Hauptverfasser: Zhao, Qian, Gong, Chuangchuang, Zhang, Pan, Liu, Yishan, Wang, Yao, Hao, Liang, Zhu, Enlong, Zhu, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9896
container_issue 10
container_start_page 9888
container_title Journal of materials science. Materials in electronics
container_volume 30
creator Zhao, Qian
Gong, Chuangchuang
Zhang, Pan
Liu, Yishan
Wang, Yao
Hao, Liang
Zhu, Enlong
Zhu, Zheng
description MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field ( H irr ) of MgB 2 has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB 2 microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the J c of MgB 2 bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi 2.5 B 2 nano-inclusions is expected to enhance the J c value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi 2.5 B 2 , MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB 2 grains and more lattice defects are further required to increase the flux pinning centers.
doi_str_mv 10.1007/s10854-019-01326-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221563074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221563074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWmOq_gFq14UvIU2TbpZ1qQmrbBn_7jZreDNwzAw8zwD8wJwTvAlwVhcJYKrgiNMZC5GSyQPwIwUgiFe0fdDMMOyEIgXlB6Dk5TWGOOSs2oGvhe-3myTSzBYOKwM1AG1oXe-g8Zao4fdvIt1vzLewNq30Nc-oGcHg9_Nnc-G9xl0X27Y7gkd3eB0vYF6jNH4AbbGp90yw0_dNYVp7E3MWjvqIcR0Co5svUnm7LfPwdvd7evNA1q-3D_eLJZIUy4H1GhGjSyr0hLKGs64tE3JRSOLQmojLW2YFKTUghLDpK6poG2baYuFzkDL5uBiutvH8DmaNKh1GGP-PylKKSlKhgXPFJ0oHUNK0VjVR_dRx60iWO3CVlPYKoet9mErmSU2SSnDvjPx7_Q_1g-aNYPd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221563074</pqid></control><display><type>article</type><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</creator><creatorcontrib>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</creatorcontrib><description>MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field ( H irr ) of MgB 2 has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB 2 microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the J c of MgB 2 bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi 2.5 B 2 nano-inclusions is expected to enhance the J c value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi 2.5 B 2 , MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB 2 grains and more lattice defects are further required to increase the flux pinning centers.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-019-01326-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boron ; Carbon ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Connectivity ; Critical current density ; Crystal defects ; Doping ; Flux pinning ; Grain boundaries ; Graphene ; Inclusions ; Magnesium compounds ; Materials Science ; Mechanical engineering ; Microscopy ; Nickel ; Optical and Electronic Materials ; Porosity ; R&amp;D ; Research &amp; development ; Substitution reactions</subject><ispartof>Journal of materials science. Materials in electronics, 2019-05, Vol.30 (10), p.9888-9896</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</citedby><cites>FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-019-01326-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-019-01326-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Gong, Chuangchuang</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Liu, Yishan</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Hao, Liang</creatorcontrib><creatorcontrib>Zhu, Enlong</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field ( H irr ) of MgB 2 has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB 2 microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the J c of MgB 2 bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi 2.5 B 2 nano-inclusions is expected to enhance the J c value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi 2.5 B 2 , MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB 2 grains and more lattice defects are further required to increase the flux pinning centers.</description><subject>Boron</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Connectivity</subject><subject>Critical current density</subject><subject>Crystal defects</subject><subject>Doping</subject><subject>Flux pinning</subject><subject>Grain boundaries</subject><subject>Graphene</subject><subject>Inclusions</subject><subject>Magnesium compounds</subject><subject>Materials Science</subject><subject>Mechanical engineering</subject><subject>Microscopy</subject><subject>Nickel</subject><subject>Optical and Electronic Materials</subject><subject>Porosity</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Substitution reactions</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9F8tWmOq_gFq14UvIU2TbpZ1qQmrbBn_7jZreDNwzAw8zwD8wJwTvAlwVhcJYKrgiNMZC5GSyQPwIwUgiFe0fdDMMOyEIgXlB6Dk5TWGOOSs2oGvhe-3myTSzBYOKwM1AG1oXe-g8Zao4fdvIt1vzLewNq30Nc-oGcHg9_Nnc-G9xl0X27Y7gkd3eB0vYF6jNH4AbbGp90yw0_dNYVp7E3MWjvqIcR0Co5svUnm7LfPwdvd7evNA1q-3D_eLJZIUy4H1GhGjSyr0hLKGs64tE3JRSOLQmojLW2YFKTUghLDpK6poG2baYuFzkDL5uBiutvH8DmaNKh1GGP-PylKKSlKhgXPFJ0oHUNK0VjVR_dRx60iWO3CVlPYKoet9mErmSU2SSnDvjPx7_Q_1g-aNYPd</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhao, Qian</creator><creator>Gong, Chuangchuang</creator><creator>Zhang, Pan</creator><creator>Liu, Yishan</creator><creator>Wang, Yao</creator><creator>Hao, Liang</creator><creator>Zhu, Enlong</creator><creator>Zhu, Zheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20190501</creationdate><title>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</title><author>Zhao, Qian ; Gong, Chuangchuang ; Zhang, Pan ; Liu, Yishan ; Wang, Yao ; Hao, Liang ; Zhu, Enlong ; Zhu, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-bc32e9686f123b4349fb647b9559ce9f2b39716c721e39ca272dd86ff07c9ced3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boron</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Connectivity</topic><topic>Critical current density</topic><topic>Crystal defects</topic><topic>Doping</topic><topic>Flux pinning</topic><topic>Grain boundaries</topic><topic>Graphene</topic><topic>Inclusions</topic><topic>Magnesium compounds</topic><topic>Materials Science</topic><topic>Mechanical engineering</topic><topic>Microscopy</topic><topic>Nickel</topic><topic>Optical and Electronic Materials</topic><topic>Porosity</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Substitution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Qian</creatorcontrib><creatorcontrib>Gong, Chuangchuang</creatorcontrib><creatorcontrib>Zhang, Pan</creatorcontrib><creatorcontrib>Liu, Yishan</creatorcontrib><creatorcontrib>Wang, Yao</creatorcontrib><creatorcontrib>Hao, Liang</creatorcontrib><creatorcontrib>Zhu, Enlong</creatorcontrib><creatorcontrib>Zhu, Zheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Qian</au><au>Gong, Chuangchuang</au><au>Zhang, Pan</au><au>Liu, Yishan</au><au>Wang, Yao</au><au>Hao, Liang</au><au>Zhu, Enlong</au><au>Zhu, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>30</volume><issue>10</issue><spage>9888</spage><epage>9896</epage><pages>9888-9896</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>MgB 2 bulks codoped with graphene and nickel with a composition of Mg 1−x Ni x B 1.9 G 0.1 (x = 0.02, 0.04 and 0.06) have been synthesized by an in situ reaction method. The combination effect of graphene and Ni codoping on microstructure, critical current density ( J c ) and irreversibility field ( H irr ) of MgB 2 has been studied. Graphene doping is more efficient than other forms of carbon doping for modifying the MgB 2 microstructures due to the two-dimensional structures. The doping of Ni is confirmed to eliminate the porosity present in the graphene-doped sample by the assistance of a Mg–Ni eutectic liquid at low temperature. The results clearly indicate that graphene and Ni codoping are cooperative in improving the J c of MgB 2 bulks in the zero fields due to the superior grain connectivity and high density. The flux pinning by carbon substitution and MgNi 2.5 B 2 nano-inclusions is expected to enhance the J c value at high magnetic fields. However, the positive action has been extremely offset by the aggregation of impurity structures such as MgNi 2.5 B 2 , MgO and over-doped graphene. Consequently, a delicate balance between graphene and Ni, homogeneous dispersion of nano-inclusions in MgB 2 grains and more lattice defects are further required to increase the flux pinning centers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-019-01326-9</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2019-05, Vol.30 (10), p.9888-9896
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2221563074
source SpringerLink Journals - AutoHoldings
subjects Boron
Carbon
Characterization and Evaluation of Materials
Chemistry and Materials Science
Connectivity
Critical current density
Crystal defects
Doping
Flux pinning
Grain boundaries
Graphene
Inclusions
Magnesium compounds
Materials Science
Mechanical engineering
Microscopy
Nickel
Optical and Electronic Materials
Porosity
R&D
Research & development
Substitution reactions
title Analysis of the co-doping effect of graphene and nano-Ni on grain connectivity and critical current density in MgB2 superconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T07%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20co-doping%20effect%20of%20graphene%20and%20nano-Ni%20on%20grain%20connectivity%20and%20critical%20current%20density%20in%20MgB2%20superconductors&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Zhao,%20Qian&rft.date=2019-05-01&rft.volume=30&rft.issue=10&rft.spage=9888&rft.epage=9896&rft.pages=9888-9896&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-019-01326-9&rft_dat=%3Cproquest_cross%3E2221563074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221563074&rft_id=info:pmid/&rfr_iscdi=true