Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato

Bacterial soft rot is a devastating disease in potato. However, it is difficult to evaluate disease resistance because there are a number of ways the bacterium can infect tubers, including through lenticels, in bruised tissue, and through wounds. Thus, various screening methods have been developed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of potato research 2019-06, Vol.96 (3), p.303-313
Hauptverfasser: Lee, Unseok, Silva, Renato Rodrigues, Kim, Changsoo, Kim, Hyoungseok, Heo, Seong, Park, In Sung, Kim, Wook, Jansky, Shelley, Chung, Yong Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 313
container_issue 3
container_start_page 303
container_title American journal of potato research
container_volume 96
creator Lee, Unseok
Silva, Renato Rodrigues
Kim, Changsoo
Kim, Hyoungseok
Heo, Seong
Park, In Sung
Kim, Wook
Jansky, Shelley
Chung, Yong Suk
description Bacterial soft rot is a devastating disease in potato. However, it is difficult to evaluate disease resistance because there are a number of ways the bacterium can infect tubers, including through lenticels, in bruised tissue, and through wounds. Thus, various screening methods have been developed to evaluate resistance in potato tubers. The methods published to date are limited in their ability to measure symptoms quickly and accurately in a large number of samples. Therefore, we developed a new high throughput phenotyping method to evaluate soft rot disease symptoms the assistance of image analysis software. This method has proven to be very efficient in evaluating disease symptoms.
doi_str_mv 10.1007/s12230-019-09717-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2221307484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2189133910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-c948e234ee0d60306985bb8c4f5366f9ea19f57e2323f783194f99f2e3b7e7023</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMZNkWeurUFGsgruQjkmZ0mnGJLPov3fqCO66umfxnQP3Q-iSwjUFkDeJMsaBANUEtKSSqCM0okoKormC4z6D1oSB_jxFZymtARhlqhih-ayxK4cnW7vZpTphHyJ-djZ1sd6u8F2d-uzwYte0OTQ4B3xrq-xibTd4EXzGbyHjeotfQ7Y5nKMTbzfJXfzdMfp4uH-fPpH5y-NsOpmTiguZSaWFcowL5-CrBA6lVsVyqSrhC16WXjtLtS9kjzDupeJUC6-1Z44vpZPA-BhdDbttDN-dS9msQxf7F5JhjFEOUihxkKJKU841hZ5iA1XFkFJ03rSxbmzcGQpm79YMbk3v1vy6Naov8aGU2r0nF_-nD7R-AG0vees</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2189133910</pqid></control><display><type>article</type><title>Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato</title><source>SpringerLink Journals (MCLS)</source><creator>Lee, Unseok ; Silva, Renato Rodrigues ; Kim, Changsoo ; Kim, Hyoungseok ; Heo, Seong ; Park, In Sung ; Kim, Wook ; Jansky, Shelley ; Chung, Yong Suk</creator><creatorcontrib>Lee, Unseok ; Silva, Renato Rodrigues ; Kim, Changsoo ; Kim, Hyoungseok ; Heo, Seong ; Park, In Sung ; Kim, Wook ; Jansky, Shelley ; Chung, Yong Suk</creatorcontrib><description>Bacterial soft rot is a devastating disease in potato. However, it is difficult to evaluate disease resistance because there are a number of ways the bacterium can infect tubers, including through lenticels, in bruised tissue, and through wounds. Thus, various screening methods have been developed to evaluate resistance in potato tubers. The methods published to date are limited in their ability to measure symptoms quickly and accurately in a large number of samples. Therefore, we developed a new high throughput phenotyping method to evaluate soft rot disease symptoms the assistance of image analysis software. This method has proven to be very efficient in evaluating disease symptoms.</description><identifier>ISSN: 1099-209X</identifier><identifier>EISSN: 1874-9380</identifier><identifier>DOI: 10.1007/s12230-019-09717-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Agriculture ; Automation ; Bacteria ; Biomedical and Life Sciences ; Cloning ; Deep learning ; Disease resistance ; Image analysis ; Image processing ; Life Sciences ; Methods ; Phenotyping ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Pathology ; Plant resistance ; Plant Sciences ; Potatoes ; Signs and symptoms ; Soft rot ; Software ; Tubers</subject><ispartof>American journal of potato research, 2019-06, Vol.96 (3), p.303-313</ispartof><rights>The Potato Association of America 2019</rights><rights>American Journal of Potato Research is a copyright of Springer, (2019). All Rights Reserved.</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-c948e234ee0d60306985bb8c4f5366f9ea19f57e2323f783194f99f2e3b7e7023</citedby><cites>FETCH-LOGICAL-c347t-c948e234ee0d60306985bb8c4f5366f9ea19f57e2323f783194f99f2e3b7e7023</cites><orcidid>0000-0003-3121-7600</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12230-019-09717-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12230-019-09717-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lee, Unseok</creatorcontrib><creatorcontrib>Silva, Renato Rodrigues</creatorcontrib><creatorcontrib>Kim, Changsoo</creatorcontrib><creatorcontrib>Kim, Hyoungseok</creatorcontrib><creatorcontrib>Heo, Seong</creatorcontrib><creatorcontrib>Park, In Sung</creatorcontrib><creatorcontrib>Kim, Wook</creatorcontrib><creatorcontrib>Jansky, Shelley</creatorcontrib><creatorcontrib>Chung, Yong Suk</creatorcontrib><title>Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato</title><title>American journal of potato research</title><addtitle>Am. J. Potato Res</addtitle><description>Bacterial soft rot is a devastating disease in potato. However, it is difficult to evaluate disease resistance because there are a number of ways the bacterium can infect tubers, including through lenticels, in bruised tissue, and through wounds. Thus, various screening methods have been developed to evaluate resistance in potato tubers. The methods published to date are limited in their ability to measure symptoms quickly and accurately in a large number of samples. Therefore, we developed a new high throughput phenotyping method to evaluate soft rot disease symptoms the assistance of image analysis software. This method has proven to be very efficient in evaluating disease symptoms.</description><subject>Agriculture</subject><subject>Automation</subject><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Cloning</subject><subject>Deep learning</subject><subject>Disease resistance</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Phenotyping</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant resistance</subject><subject>Plant Sciences</subject><subject>Potatoes</subject><subject>Signs and symptoms</subject><subject>Soft rot</subject><subject>Software</subject><subject>Tubers</subject><issn>1099-209X</issn><issn>1874-9380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXAdfTmMZNkWeurUFGsgruQjkmZ0mnGJLPov3fqCO66umfxnQP3Q-iSwjUFkDeJMsaBANUEtKSSqCM0okoKormC4z6D1oSB_jxFZymtARhlqhih-ayxK4cnW7vZpTphHyJ-djZ1sd6u8F2d-uzwYte0OTQ4B3xrq-xibTd4EXzGbyHjeotfQ7Y5nKMTbzfJXfzdMfp4uH-fPpH5y-NsOpmTiguZSaWFcowL5-CrBA6lVsVyqSrhC16WXjtLtS9kjzDupeJUC6-1Z44vpZPA-BhdDbttDN-dS9msQxf7F5JhjFEOUihxkKJKU841hZ5iA1XFkFJ03rSxbmzcGQpm79YMbk3v1vy6Naov8aGU2r0nF_-nD7R-AG0vees</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Lee, Unseok</creator><creator>Silva, Renato Rodrigues</creator><creator>Kim, Changsoo</creator><creator>Kim, Hyoungseok</creator><creator>Heo, Seong</creator><creator>Park, In Sung</creator><creator>Kim, Wook</creator><creator>Jansky, Shelley</creator><creator>Chung, Yong Suk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3121-7600</orcidid></search><sort><creationdate>20190601</creationdate><title>Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato</title><author>Lee, Unseok ; Silva, Renato Rodrigues ; Kim, Changsoo ; Kim, Hyoungseok ; Heo, Seong ; Park, In Sung ; Kim, Wook ; Jansky, Shelley ; Chung, Yong Suk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-c948e234ee0d60306985bb8c4f5366f9ea19f57e2323f783194f99f2e3b7e7023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Automation</topic><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Cloning</topic><topic>Deep learning</topic><topic>Disease resistance</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Phenotyping</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant resistance</topic><topic>Plant Sciences</topic><topic>Potatoes</topic><topic>Signs and symptoms</topic><topic>Soft rot</topic><topic>Software</topic><topic>Tubers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Unseok</creatorcontrib><creatorcontrib>Silva, Renato Rodrigues</creatorcontrib><creatorcontrib>Kim, Changsoo</creatorcontrib><creatorcontrib>Kim, Hyoungseok</creatorcontrib><creatorcontrib>Heo, Seong</creatorcontrib><creatorcontrib>Park, In Sung</creatorcontrib><creatorcontrib>Kim, Wook</creatorcontrib><creatorcontrib>Jansky, Shelley</creatorcontrib><creatorcontrib>Chung, Yong Suk</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of potato research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Unseok</au><au>Silva, Renato Rodrigues</au><au>Kim, Changsoo</au><au>Kim, Hyoungseok</au><au>Heo, Seong</au><au>Park, In Sung</au><au>Kim, Wook</au><au>Jansky, Shelley</au><au>Chung, Yong Suk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato</atitle><jtitle>American journal of potato research</jtitle><stitle>Am. J. Potato Res</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>96</volume><issue>3</issue><spage>303</spage><epage>313</epage><pages>303-313</pages><issn>1099-209X</issn><eissn>1874-9380</eissn><abstract>Bacterial soft rot is a devastating disease in potato. However, it is difficult to evaluate disease resistance because there are a number of ways the bacterium can infect tubers, including through lenticels, in bruised tissue, and through wounds. Thus, various screening methods have been developed to evaluate resistance in potato tubers. The methods published to date are limited in their ability to measure symptoms quickly and accurately in a large number of samples. Therefore, we developed a new high throughput phenotyping method to evaluate soft rot disease symptoms the assistance of image analysis software. This method has proven to be very efficient in evaluating disease symptoms.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12230-019-09717-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3121-7600</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1099-209X
ispartof American journal of potato research, 2019-06, Vol.96 (3), p.303-313
issn 1099-209X
1874-9380
language eng
recordid cdi_proquest_journals_2221307484
source SpringerLink Journals (MCLS)
subjects Agriculture
Automation
Bacteria
Biomedical and Life Sciences
Cloning
Deep learning
Disease resistance
Image analysis
Image processing
Life Sciences
Methods
Phenotyping
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Pathology
Plant resistance
Plant Sciences
Potatoes
Signs and symptoms
Soft rot
Software
Tubers
title Image Analysis for Measuring Disease Symptom to Bacterial Soft Rot in Potato
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Analysis%20for%20Measuring%20Disease%20Symptom%20to%20Bacterial%20Soft%20Rot%20in%20Potato&rft.jtitle=American%20journal%20of%20potato%20research&rft.au=Lee,%20Unseok&rft.date=2019-06-01&rft.volume=96&rft.issue=3&rft.spage=303&rft.epage=313&rft.pages=303-313&rft.issn=1099-209X&rft.eissn=1874-9380&rft_id=info:doi/10.1007/s12230-019-09717-8&rft_dat=%3Cproquest_cross%3E2189133910%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2189133910&rft_id=info:pmid/&rfr_iscdi=true