23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processabili...
Gespeichert in:
Veröffentlicht in: | Nature Energy 2017-02, Vol.2 (4), p.17009, Article 17009 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 17009 |
container_title | Nature Energy |
container_volume | 2 |
creator | Bush, Kevin A. Palmstrom, Axel F. Yu, Zhengshan J. Boccard, Mathieu Cheacharoen, Rongrong Mailoa, Jonathan P. McMeekin, David P. Hoye, Robert L. Z. Bailie, Colin D. Leijtens, Tomas Peters, Ian Marius Minichetti, Maxmillian C. Rolston, Nicholas Prasanna, Rohit Sofia, Sarah Harwood, Duncan Ma, Wen Moghadam, Farhad Snaith, Henry J. Buonassisi, Tonio Holman, Zachary C. Bent, Stacey F. McGehee, Michael D. |
description | As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm
2
perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85
∘
C and 85% relative humidity.
Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm
2
tandem solar cell with a perovskite device that withstands damp heat tests. |
doi_str_mv | 10.1038/nenergy.2017.9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2221207019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221207019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOOaunovisd2XpGnaowx_wcCLgreQpumW2SUzyZT992ZU0Iun7zs878vDi9AlhgIDredWW-1Xh4IA5kVzgiYEWJ1zVlanf_5zNAthAwCkIYTVeILeCC2qm1z3vVFG25htnXWDiWujsp327jO8m6jnwQxGOZtFaTu9zYIbpM-UHoaQfSU4M9tdYnWXhSjbxMbDBTrr5RD07OdO0ev93cviMV8-Pzwtbpe5oryMeUc5wViyqmWU875toO84aIZLQqVscNUDpw3Itmqwgk7XtSQEGlmWXEJLGJ2iq7HXhWhEUMlWrZOq1SoKzCiDiiToeoSS5cdehyg2bu9t8hKEEEyAA24SVYyU8i4Er3ux82Yr_UFgEMeVxc_K4riyOAbmYyAk0K60_639J_ENAfyAtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221207019</pqid></control><display><type>article</type><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D.</creator><creatorcontrib>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D. ; Stanford Univ., CA (United States)</creatorcontrib><description>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm
2
perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85
∘
C and 85% relative humidity.
Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm
2
tandem solar cell with a perovskite device that withstands damp heat tests.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/nenergy.2017.9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/909/4101/4096/946 ; Absorption ; Atomic layer epitaxy ; Buffer layers ; Cadmium ; Cadmium telluride ; Cadmium tellurides ; Cesium ; Copper indium gallium selenides ; Diffusion barriers ; Diffusion layers ; Economics and Management ; Energy ; Energy & Fuels ; Energy Policy ; Energy Storage ; Energy Systems ; Gallium ; Heterojunctions ; Lead compounds ; Materials Science ; Metal halides ; Perovskites ; Photovoltaic cells ; Relative humidity ; Renewable and Green Energy ; Selenide ; Silicon ; Solar cells ; Stability ; Tin oxide ; Tin oxides</subject><ispartof>Nature Energy, 2017-02, Vol.2 (4), p.17009, Article 17009</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</citedby><cites>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</cites><orcidid>0000-0002-7675-0065 ; 0000-0002-9741-2348 ; 0000000297412348 ; 0000000276750065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nenergy.2017.9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nenergy.2017.9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1535062$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Kevin A.</creatorcontrib><creatorcontrib>Palmstrom, Axel F.</creatorcontrib><creatorcontrib>Yu, Zhengshan J.</creatorcontrib><creatorcontrib>Boccard, Mathieu</creatorcontrib><creatorcontrib>Cheacharoen, Rongrong</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>McMeekin, David P.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Bailie, Colin D.</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><creatorcontrib>Minichetti, Maxmillian C.</creatorcontrib><creatorcontrib>Rolston, Nicholas</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Sofia, Sarah</creatorcontrib><creatorcontrib>Harwood, Duncan</creatorcontrib><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>Moghadam, Farhad</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Holman, Zachary C.</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><title>Nature Energy</title><addtitle>Nat Energy</addtitle><description>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm
2
perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85
∘
C and 85% relative humidity.
Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm
2
tandem solar cell with a perovskite device that withstands damp heat tests.</description><subject>639/4077/909/4101/4096/946</subject><subject>Absorption</subject><subject>Atomic layer epitaxy</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium telluride</subject><subject>Cadmium tellurides</subject><subject>Cesium</subject><subject>Copper indium gallium selenides</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy & Fuels</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Gallium</subject><subject>Heterojunctions</subject><subject>Lead compounds</subject><subject>Materials Science</subject><subject>Metal halides</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Renewable and Green Energy</subject><subject>Selenide</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOOaunovisd2XpGnaowx_wcCLgreQpumW2SUzyZT992ZU0Iun7zs878vDi9AlhgIDredWW-1Xh4IA5kVzgiYEWJ1zVlanf_5zNAthAwCkIYTVeILeCC2qm1z3vVFG25htnXWDiWujsp327jO8m6jnwQxGOZtFaTu9zYIbpM-UHoaQfSU4M9tdYnWXhSjbxMbDBTrr5RD07OdO0ev93cviMV8-Pzwtbpe5oryMeUc5wViyqmWU875toO84aIZLQqVscNUDpw3Itmqwgk7XtSQEGlmWXEJLGJ2iq7HXhWhEUMlWrZOq1SoKzCiDiiToeoSS5cdehyg2bu9t8hKEEEyAA24SVYyU8i4Er3ux82Yr_UFgEMeVxc_K4riyOAbmYyAk0K60_639J_ENAfyAtg</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Bush, Kevin A.</creator><creator>Palmstrom, Axel F.</creator><creator>Yu, Zhengshan J.</creator><creator>Boccard, Mathieu</creator><creator>Cheacharoen, Rongrong</creator><creator>Mailoa, Jonathan P.</creator><creator>McMeekin, David P.</creator><creator>Hoye, Robert L. Z.</creator><creator>Bailie, Colin D.</creator><creator>Leijtens, Tomas</creator><creator>Peters, Ian Marius</creator><creator>Minichetti, Maxmillian C.</creator><creator>Rolston, Nicholas</creator><creator>Prasanna, Rohit</creator><creator>Sofia, Sarah</creator><creator>Harwood, Duncan</creator><creator>Ma, Wen</creator><creator>Moghadam, Farhad</creator><creator>Snaith, Henry J.</creator><creator>Buonassisi, Tonio</creator><creator>Holman, Zachary C.</creator><creator>Bent, Stacey F.</creator><creator>McGehee, Michael D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid></search><sort><creationdate>20170217</creationdate><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><author>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/4077/909/4101/4096/946</topic><topic>Absorption</topic><topic>Atomic layer epitaxy</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium telluride</topic><topic>Cadmium tellurides</topic><topic>Cesium</topic><topic>Copper indium gallium selenides</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy & Fuels</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Gallium</topic><topic>Heterojunctions</topic><topic>Lead compounds</topic><topic>Materials Science</topic><topic>Metal halides</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Renewable and Green Energy</topic><topic>Selenide</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Kevin A.</creatorcontrib><creatorcontrib>Palmstrom, Axel F.</creatorcontrib><creatorcontrib>Yu, Zhengshan J.</creatorcontrib><creatorcontrib>Boccard, Mathieu</creatorcontrib><creatorcontrib>Cheacharoen, Rongrong</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>McMeekin, David P.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Bailie, Colin D.</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><creatorcontrib>Minichetti, Maxmillian C.</creatorcontrib><creatorcontrib>Rolston, Nicholas</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Sofia, Sarah</creatorcontrib><creatorcontrib>Harwood, Duncan</creatorcontrib><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>Moghadam, Farhad</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Holman, Zachary C.</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Kevin A.</au><au>Palmstrom, Axel F.</au><au>Yu, Zhengshan J.</au><au>Boccard, Mathieu</au><au>Cheacharoen, Rongrong</au><au>Mailoa, Jonathan P.</au><au>McMeekin, David P.</au><au>Hoye, Robert L. Z.</au><au>Bailie, Colin D.</au><au>Leijtens, Tomas</au><au>Peters, Ian Marius</au><au>Minichetti, Maxmillian C.</au><au>Rolston, Nicholas</au><au>Prasanna, Rohit</au><au>Sofia, Sarah</au><au>Harwood, Duncan</au><au>Ma, Wen</au><au>Moghadam, Farhad</au><au>Snaith, Henry J.</au><au>Buonassisi, Tonio</au><au>Holman, Zachary C.</au><au>Bent, Stacey F.</au><au>McGehee, Michael D.</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</atitle><jtitle>Nature Energy</jtitle><stitle>Nat Energy</stitle><date>2017-02-17</date><risdate>2017</risdate><volume>2</volume><issue>4</issue><spage>17009</spage><pages>17009-</pages><artnum>17009</artnum><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm
2
perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85
∘
C and 85% relative humidity.
Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm
2
tandem solar cell with a perovskite device that withstands damp heat tests.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nenergy.2017.9</doi><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature Energy, 2017-02, Vol.2 (4), p.17009, Article 17009 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_proquest_journals_2221207019 |
source | SpringerLink Journals - AutoHoldings |
subjects | 639/4077/909/4101/4096/946 Absorption Atomic layer epitaxy Buffer layers Cadmium Cadmium telluride Cadmium tellurides Cesium Copper indium gallium selenides Diffusion barriers Diffusion layers Economics and Management Energy Energy & Fuels Energy Policy Energy Storage Energy Systems Gallium Heterojunctions Lead compounds Materials Science Metal halides Perovskites Photovoltaic cells Relative humidity Renewable and Green Energy Selenide Silicon Solar cells Stability Tin oxide Tin oxides |
title | 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=23.6%25-efficient%20monolithic%20perovskite/silicon%20tandem%20solar%20cells%20with%20improved%20stability&rft.jtitle=Nature%20Energy&rft.au=Bush,%20Kevin%20A.&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2017-02-17&rft.volume=2&rft.issue=4&rft.spage=17009&rft.pages=17009-&rft.artnum=17009&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/nenergy.2017.9&rft_dat=%3Cproquest_osti_%3E2221207019%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221207019&rft_id=info:pmid/&rfr_iscdi=true |