23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability

As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processabili...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Energy 2017-02, Vol.2 (4), p.17009, Article 17009
Hauptverfasser: Bush, Kevin A., Palmstrom, Axel F., Yu, Zhengshan J., Boccard, Mathieu, Cheacharoen, Rongrong, Mailoa, Jonathan P., McMeekin, David P., Hoye, Robert L. Z., Bailie, Colin D., Leijtens, Tomas, Peters, Ian Marius, Minichetti, Maxmillian C., Rolston, Nicholas, Prasanna, Rohit, Sofia, Sarah, Harwood, Duncan, Ma, Wen, Moghadam, Farhad, Snaith, Henry J., Buonassisi, Tonio, Holman, Zachary C., Bent, Stacey F., McGehee, Michael D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 17009
container_title Nature Energy
container_volume 2
creator Bush, Kevin A.
Palmstrom, Axel F.
Yu, Zhengshan J.
Boccard, Mathieu
Cheacharoen, Rongrong
Mailoa, Jonathan P.
McMeekin, David P.
Hoye, Robert L. Z.
Bailie, Colin D.
Leijtens, Tomas
Peters, Ian Marius
Minichetti, Maxmillian C.
Rolston, Nicholas
Prasanna, Rohit
Sofia, Sarah
Harwood, Duncan
Ma, Wen
Moghadam, Farhad
Snaith, Henry J.
Buonassisi, Tonio
Holman, Zachary C.
Bent, Stacey F.
McGehee, Michael D.
description As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm 2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85  ∘ C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm 2 tandem solar cell with a perovskite device that withstands damp heat tests.
doi_str_mv 10.1038/nenergy.2017.9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2221207019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221207019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOOaunovisd2XpGnaowx_wcCLgreQpumW2SUzyZT992ZU0Iun7zs878vDi9AlhgIDredWW-1Xh4IA5kVzgiYEWJ1zVlanf_5zNAthAwCkIYTVeILeCC2qm1z3vVFG25htnXWDiWujsp327jO8m6jnwQxGOZtFaTu9zYIbpM-UHoaQfSU4M9tdYnWXhSjbxMbDBTrr5RD07OdO0ev93cviMV8-Pzwtbpe5oryMeUc5wViyqmWU875toO84aIZLQqVscNUDpw3Itmqwgk7XtSQEGlmWXEJLGJ2iq7HXhWhEUMlWrZOq1SoKzCiDiiToeoSS5cdehyg2bu9t8hKEEEyAA24SVYyU8i4Er3ux82Yr_UFgEMeVxc_K4riyOAbmYyAk0K60_639J_ENAfyAtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221207019</pqid></control><display><type>article</type><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D.</creator><creatorcontrib>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D. ; Stanford Univ., CA (United States)</creatorcontrib><description>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm 2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85  ∘ C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm 2 tandem solar cell with a perovskite device that withstands damp heat tests.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/nenergy.2017.9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/4077/909/4101/4096/946 ; Absorption ; Atomic layer epitaxy ; Buffer layers ; Cadmium ; Cadmium telluride ; Cadmium tellurides ; Cesium ; Copper indium gallium selenides ; Diffusion barriers ; Diffusion layers ; Economics and Management ; Energy ; Energy &amp; Fuels ; Energy Policy ; Energy Storage ; Energy Systems ; Gallium ; Heterojunctions ; Lead compounds ; Materials Science ; Metal halides ; Perovskites ; Photovoltaic cells ; Relative humidity ; Renewable and Green Energy ; Selenide ; Silicon ; Solar cells ; Stability ; Tin oxide ; Tin oxides</subject><ispartof>Nature Energy, 2017-02, Vol.2 (4), p.17009, Article 17009</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</citedby><cites>FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</cites><orcidid>0000-0002-7675-0065 ; 0000-0002-9741-2348 ; 0000000297412348 ; 0000000276750065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nenergy.2017.9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nenergy.2017.9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1535062$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Kevin A.</creatorcontrib><creatorcontrib>Palmstrom, Axel F.</creatorcontrib><creatorcontrib>Yu, Zhengshan J.</creatorcontrib><creatorcontrib>Boccard, Mathieu</creatorcontrib><creatorcontrib>Cheacharoen, Rongrong</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>McMeekin, David P.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Bailie, Colin D.</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><creatorcontrib>Minichetti, Maxmillian C.</creatorcontrib><creatorcontrib>Rolston, Nicholas</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Sofia, Sarah</creatorcontrib><creatorcontrib>Harwood, Duncan</creatorcontrib><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>Moghadam, Farhad</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Holman, Zachary C.</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><title>Nature Energy</title><addtitle>Nat Energy</addtitle><description>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm 2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85  ∘ C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm 2 tandem solar cell with a perovskite device that withstands damp heat tests.</description><subject>639/4077/909/4101/4096/946</subject><subject>Absorption</subject><subject>Atomic layer epitaxy</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium telluride</subject><subject>Cadmium tellurides</subject><subject>Cesium</subject><subject>Copper indium gallium selenides</subject><subject>Diffusion barriers</subject><subject>Diffusion layers</subject><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy &amp; Fuels</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Gallium</subject><subject>Heterojunctions</subject><subject>Lead compounds</subject><subject>Materials Science</subject><subject>Metal halides</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Relative humidity</subject><subject>Renewable and Green Energy</subject><subject>Selenide</subject><subject>Silicon</subject><subject>Solar cells</subject><subject>Stability</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOOaunovisd2XpGnaowx_wcCLgreQpumW2SUzyZT992ZU0Iun7zs878vDi9AlhgIDredWW-1Xh4IA5kVzgiYEWJ1zVlanf_5zNAthAwCkIYTVeILeCC2qm1z3vVFG25htnXWDiWujsp327jO8m6jnwQxGOZtFaTu9zYIbpM-UHoaQfSU4M9tdYnWXhSjbxMbDBTrr5RD07OdO0ev93cviMV8-Pzwtbpe5oryMeUc5wViyqmWU875toO84aIZLQqVscNUDpw3Itmqwgk7XtSQEGlmWXEJLGJ2iq7HXhWhEUMlWrZOq1SoKzCiDiiToeoSS5cdehyg2bu9t8hKEEEyAA24SVYyU8i4Er3ux82Yr_UFgEMeVxc_K4riyOAbmYyAk0K60_639J_ENAfyAtg</recordid><startdate>20170217</startdate><enddate>20170217</enddate><creator>Bush, Kevin A.</creator><creator>Palmstrom, Axel F.</creator><creator>Yu, Zhengshan J.</creator><creator>Boccard, Mathieu</creator><creator>Cheacharoen, Rongrong</creator><creator>Mailoa, Jonathan P.</creator><creator>McMeekin, David P.</creator><creator>Hoye, Robert L. Z.</creator><creator>Bailie, Colin D.</creator><creator>Leijtens, Tomas</creator><creator>Peters, Ian Marius</creator><creator>Minichetti, Maxmillian C.</creator><creator>Rolston, Nicholas</creator><creator>Prasanna, Rohit</creator><creator>Sofia, Sarah</creator><creator>Harwood, Duncan</creator><creator>Ma, Wen</creator><creator>Moghadam, Farhad</creator><creator>Snaith, Henry J.</creator><creator>Buonassisi, Tonio</creator><creator>Holman, Zachary C.</creator><creator>Bent, Stacey F.</creator><creator>McGehee, Michael D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid></search><sort><creationdate>20170217</creationdate><title>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</title><author>Bush, Kevin A. ; Palmstrom, Axel F. ; Yu, Zhengshan J. ; Boccard, Mathieu ; Cheacharoen, Rongrong ; Mailoa, Jonathan P. ; McMeekin, David P. ; Hoye, Robert L. Z. ; Bailie, Colin D. ; Leijtens, Tomas ; Peters, Ian Marius ; Minichetti, Maxmillian C. ; Rolston, Nicholas ; Prasanna, Rohit ; Sofia, Sarah ; Harwood, Duncan ; Ma, Wen ; Moghadam, Farhad ; Snaith, Henry J. ; Buonassisi, Tonio ; Holman, Zachary C. ; Bent, Stacey F. ; McGehee, Michael D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-d37211a56b5377fb90fd70e51423aa916f07390ab691c0de88a2209a447a0b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/4077/909/4101/4096/946</topic><topic>Absorption</topic><topic>Atomic layer epitaxy</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium telluride</topic><topic>Cadmium tellurides</topic><topic>Cesium</topic><topic>Copper indium gallium selenides</topic><topic>Diffusion barriers</topic><topic>Diffusion layers</topic><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy &amp; Fuels</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Gallium</topic><topic>Heterojunctions</topic><topic>Lead compounds</topic><topic>Materials Science</topic><topic>Metal halides</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Relative humidity</topic><topic>Renewable and Green Energy</topic><topic>Selenide</topic><topic>Silicon</topic><topic>Solar cells</topic><topic>Stability</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bush, Kevin A.</creatorcontrib><creatorcontrib>Palmstrom, Axel F.</creatorcontrib><creatorcontrib>Yu, Zhengshan J.</creatorcontrib><creatorcontrib>Boccard, Mathieu</creatorcontrib><creatorcontrib>Cheacharoen, Rongrong</creatorcontrib><creatorcontrib>Mailoa, Jonathan P.</creatorcontrib><creatorcontrib>McMeekin, David P.</creatorcontrib><creatorcontrib>Hoye, Robert L. Z.</creatorcontrib><creatorcontrib>Bailie, Colin D.</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Peters, Ian Marius</creatorcontrib><creatorcontrib>Minichetti, Maxmillian C.</creatorcontrib><creatorcontrib>Rolston, Nicholas</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Sofia, Sarah</creatorcontrib><creatorcontrib>Harwood, Duncan</creatorcontrib><creatorcontrib>Ma, Wen</creatorcontrib><creatorcontrib>Moghadam, Farhad</creatorcontrib><creatorcontrib>Snaith, Henry J.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Holman, Zachary C.</creatorcontrib><creatorcontrib>Bent, Stacey F.</creatorcontrib><creatorcontrib>McGehee, Michael D.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Kevin A.</au><au>Palmstrom, Axel F.</au><au>Yu, Zhengshan J.</au><au>Boccard, Mathieu</au><au>Cheacharoen, Rongrong</au><au>Mailoa, Jonathan P.</au><au>McMeekin, David P.</au><au>Hoye, Robert L. Z.</au><au>Bailie, Colin D.</au><au>Leijtens, Tomas</au><au>Peters, Ian Marius</au><au>Minichetti, Maxmillian C.</au><au>Rolston, Nicholas</au><au>Prasanna, Rohit</au><au>Sofia, Sarah</au><au>Harwood, Duncan</au><au>Ma, Wen</au><au>Moghadam, Farhad</au><au>Snaith, Henry J.</au><au>Buonassisi, Tonio</au><au>Holman, Zachary C.</au><au>Bent, Stacey F.</au><au>McGehee, Michael D.</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability</atitle><jtitle>Nature Energy</jtitle><stitle>Nat Energy</stitle><date>2017-02-17</date><risdate>2017</risdate><volume>2</volume><issue>4</issue><spage>17009</spage><pages>17009-</pages><artnum>17009</artnum><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>As the record single-junction efficiencies of perovskite solar cells now rival those of copper indium gallium selenide, cadmium telluride and multicrystalline silicon, they are becoming increasingly attractive for use in tandem solar cells due to their wide, tunable bandgap and solution processability. Previously, perovskite/silicon tandems were limited by significant parasitic absorption and poor environmental stability. Here, we improve the efficiency of monolithic, two-terminal, 1-cm 2 perovskite/silicon tandems to 23.6% by combining an infrared-tuned silicon heterojunction bottom cell with the recently developed caesium formamidinium lead halide perovskite. This more-stable perovskite tolerates deposition of a tin oxide buffer layer via atomic layer deposition that prevents shunts, has negligible parasitic absorption, and allows for the sputter deposition of a transparent top electrode. Furthermore, the window layer doubles as a diffusion barrier, increasing the thermal and environmental stability to enable perovskite devices that withstand a 1,000-hour damp heat test at 85  ∘ C and 85% relative humidity. Perovskite solar cells can complement silicon photovoltaics in multijunction devices. Here, the authors optimize light harvesting in monolithic perovskite-on-silicon devices and fabricate a certified 23.6% efficient, 1 cm 2 tandem solar cell with a perovskite device that withstands damp heat tests.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nenergy.2017.9</doi><orcidid>https://orcid.org/0000-0002-7675-0065</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000276750065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature Energy, 2017-02, Vol.2 (4), p.17009, Article 17009
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2221207019
source SpringerLink Journals - AutoHoldings
subjects 639/4077/909/4101/4096/946
Absorption
Atomic layer epitaxy
Buffer layers
Cadmium
Cadmium telluride
Cadmium tellurides
Cesium
Copper indium gallium selenides
Diffusion barriers
Diffusion layers
Economics and Management
Energy
Energy & Fuels
Energy Policy
Energy Storage
Energy Systems
Gallium
Heterojunctions
Lead compounds
Materials Science
Metal halides
Perovskites
Photovoltaic cells
Relative humidity
Renewable and Green Energy
Selenide
Silicon
Solar cells
Stability
Tin oxide
Tin oxides
title 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=23.6%25-efficient%20monolithic%20perovskite/silicon%20tandem%20solar%20cells%20with%20improved%20stability&rft.jtitle=Nature%20Energy&rft.au=Bush,%20Kevin%20A.&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2017-02-17&rft.volume=2&rft.issue=4&rft.spage=17009&rft.pages=17009-&rft.artnum=17009&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/nenergy.2017.9&rft_dat=%3Cproquest_osti_%3E2221207019%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221207019&rft_id=info:pmid/&rfr_iscdi=true