A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4
During fast charging, the commonly used Li-ion battery anode material, graphite, has a significant shortcoming, that is, its discharge potential is too low to guarantee the safety of batteries. Li3VO4 (LVO), an alternative anode material, has a safe discharge potential window of 0.5 V to 1.0 V vs. L...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2019, Vol.7 (18), p.11250-11256 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11256 |
---|---|
container_issue | 18 |
container_start_page | 11250 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 7 |
creator | Huang, Yanghang Yang, Haochen Zhang, Yi Zhang, Yamin Wu, Yutong Tian, Mengkun Chen, Peng Trout, Robert Yao, Ma Tzu-Ho Wu Wu, Yuping Liu, Nian |
description | During fast charging, the commonly used Li-ion battery anode material, graphite, has a significant shortcoming, that is, its discharge potential is too low to guarantee the safety of batteries. Li3VO4 (LVO), an alternative anode material, has a safe discharge potential window of 0.5 V to 1.0 V vs. Li+/Li and high theoretical capacity (∼394 mA h g−1). However, the poor conductivity of LVO (∼10−10 S m−1) constrains its further applications. In this paper, we innovatively embedded uniform LVO onto a multilayered material, Ti3C2Tx MXene, by a sol–gel method. The Ti3C2Tx MXene nanolayers with high electrical conductivity (2.4 × 105 S m−1) served as a scaffold to load LVO nanoparticles. The LVO/Ti3C2Tx MXene composite exhibited remarkable electrochemical performance in terms of rate capability and long-term cycle stability in comparison with bare LVO and commercial graphite anodes. The LVO/Ti3C2Tx MXene composite delivered an initial capacity of ∼187 mA h g−1 and 146 mA h g−1 after 1000 cycles at 5C, compared to bare LVO (an initial capacity of ∼41 mA h g−1 and ∼40 mA h g−1 after 1000 cycles at 5C) and graphite (∼71 mA h g−1 after 1000 cycles at 5C). This work opens new possibilities of anode materials for safe and fast-charging Li-ion batteries. |
doi_str_mv | 10.1039/c9ta02037c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2221144203</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221144203</sourcerecordid><originalsourceid>FETCH-LOGICAL-g220t-352237a1ff74fc559cccbb4772b9212068132e33e9dc74bb874c2c6a86bb19653</originalsourceid><addsrcrecordid>eNo9UEtLxDAYDKLgsu7FXxDwHE2-pHkcl8XHQqWXXfG2JGnS7bK2tUkP_nsrinOZgRlmYBC6ZfSeUW4evMmWAuXKX6AF0IISJYy8_NdaX6NVSic6Q1MqjVmgao2TjQHbrsbRpkz80Y5N2zX43OZjO32Qtu-wszmH8WtO9XXAU_rxX99DF3CahqEfc6hx2fK3Stygq2jPKaz-eIn2T4-7zQspq-ftZl2SBoBmwgsAriyLUYnoi8J4750TSoEzwIBKzTgEzoOpvRLOaSU8eGm1dI4ZWfAluvvtHcb-cwopH079NHbz5AEAGBNiPoJ_A4M5T1c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221144203</pqid></control><display><type>article</type><title>A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Huang, Yanghang ; Yang, Haochen ; Zhang, Yi ; Zhang, Yamin ; Wu, Yutong ; Tian, Mengkun ; Chen, Peng ; Trout, Robert ; Yao, Ma ; Tzu-Ho Wu ; Wu, Yuping ; Liu, Nian</creator><creatorcontrib>Huang, Yanghang ; Yang, Haochen ; Zhang, Yi ; Zhang, Yamin ; Wu, Yutong ; Tian, Mengkun ; Chen, Peng ; Trout, Robert ; Yao, Ma ; Tzu-Ho Wu ; Wu, Yuping ; Liu, Nian</creatorcontrib><description>During fast charging, the commonly used Li-ion battery anode material, graphite, has a significant shortcoming, that is, its discharge potential is too low to guarantee the safety of batteries. Li3VO4 (LVO), an alternative anode material, has a safe discharge potential window of 0.5 V to 1.0 V vs. Li+/Li and high theoretical capacity (∼394 mA h g−1). However, the poor conductivity of LVO (∼10−10 S m−1) constrains its further applications. In this paper, we innovatively embedded uniform LVO onto a multilayered material, Ti3C2Tx MXene, by a sol–gel method. The Ti3C2Tx MXene nanolayers with high electrical conductivity (2.4 × 105 S m−1) served as a scaffold to load LVO nanoparticles. The LVO/Ti3C2Tx MXene composite exhibited remarkable electrochemical performance in terms of rate capability and long-term cycle stability in comparison with bare LVO and commercial graphite anodes. The LVO/Ti3C2Tx MXene composite delivered an initial capacity of ∼187 mA h g−1 and 146 mA h g−1 after 1000 cycles at 5C, compared to bare LVO (an initial capacity of ∼41 mA h g−1 and ∼40 mA h g−1 after 1000 cycles at 5C) and graphite (∼71 mA h g−1 after 1000 cycles at 5C). This work opens new possibilities of anode materials for safe and fast-charging Li-ion batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c9ta02037c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Charging ; Electrical conductivity ; Electrical resistivity ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Graphite ; Lithium ; Lithium-ion batteries ; MXenes ; Nanoparticles ; Rechargeable batteries ; Sol-gel processes</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (18), p.11250-11256</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Yanghang</creatorcontrib><creatorcontrib>Yang, Haochen</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wu, Yutong</creatorcontrib><creatorcontrib>Tian, Mengkun</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Trout, Robert</creatorcontrib><creatorcontrib>Yao, Ma</creatorcontrib><creatorcontrib>Tzu-Ho Wu</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><title>A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>During fast charging, the commonly used Li-ion battery anode material, graphite, has a significant shortcoming, that is, its discharge potential is too low to guarantee the safety of batteries. Li3VO4 (LVO), an alternative anode material, has a safe discharge potential window of 0.5 V to 1.0 V vs. Li+/Li and high theoretical capacity (∼394 mA h g−1). However, the poor conductivity of LVO (∼10−10 S m−1) constrains its further applications. In this paper, we innovatively embedded uniform LVO onto a multilayered material, Ti3C2Tx MXene, by a sol–gel method. The Ti3C2Tx MXene nanolayers with high electrical conductivity (2.4 × 105 S m−1) served as a scaffold to load LVO nanoparticles. The LVO/Ti3C2Tx MXene composite exhibited remarkable electrochemical performance in terms of rate capability and long-term cycle stability in comparison with bare LVO and commercial graphite anodes. The LVO/Ti3C2Tx MXene composite delivered an initial capacity of ∼187 mA h g−1 and 146 mA h g−1 after 1000 cycles at 5C, compared to bare LVO (an initial capacity of ∼41 mA h g−1 and ∼40 mA h g−1 after 1000 cycles at 5C) and graphite (∼71 mA h g−1 after 1000 cycles at 5C). This work opens new possibilities of anode materials for safe and fast-charging Li-ion batteries.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Charging</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Graphite</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>MXenes</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Sol-gel processes</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9UEtLxDAYDKLgsu7FXxDwHE2-pHkcl8XHQqWXXfG2JGnS7bK2tUkP_nsrinOZgRlmYBC6ZfSeUW4evMmWAuXKX6AF0IISJYy8_NdaX6NVSic6Q1MqjVmgao2TjQHbrsbRpkz80Y5N2zX43OZjO32Qtu-wszmH8WtO9XXAU_rxX99DF3CahqEfc6hx2fK3Stygq2jPKaz-eIn2T4-7zQspq-ftZl2SBoBmwgsAriyLUYnoi8J4750TSoEzwIBKzTgEzoOpvRLOaSU8eGm1dI4ZWfAluvvtHcb-cwopH079NHbz5AEAGBNiPoJ_A4M5T1c</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Huang, Yanghang</creator><creator>Yang, Haochen</creator><creator>Zhang, Yi</creator><creator>Zhang, Yamin</creator><creator>Wu, Yutong</creator><creator>Tian, Mengkun</creator><creator>Chen, Peng</creator><creator>Trout, Robert</creator><creator>Yao, Ma</creator><creator>Tzu-Ho Wu</creator><creator>Wu, Yuping</creator><creator>Liu, Nian</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2019</creationdate><title>A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4</title><author>Huang, Yanghang ; Yang, Haochen ; Zhang, Yi ; Zhang, Yamin ; Wu, Yutong ; Tian, Mengkun ; Chen, Peng ; Trout, Robert ; Yao, Ma ; Tzu-Ho Wu ; Wu, Yuping ; Liu, Nian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g220t-352237a1ff74fc559cccbb4772b9212068132e33e9dc74bb874c2c6a86bb19653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Charging</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Graphite</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>MXenes</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Sol-gel processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Yanghang</creatorcontrib><creatorcontrib>Yang, Haochen</creatorcontrib><creatorcontrib>Zhang, Yi</creatorcontrib><creatorcontrib>Zhang, Yamin</creatorcontrib><creatorcontrib>Wu, Yutong</creatorcontrib><creatorcontrib>Tian, Mengkun</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Trout, Robert</creatorcontrib><creatorcontrib>Yao, Ma</creatorcontrib><creatorcontrib>Tzu-Ho Wu</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Liu, Nian</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Yanghang</au><au>Yang, Haochen</au><au>Zhang, Yi</au><au>Zhang, Yamin</au><au>Wu, Yutong</au><au>Tian, Mengkun</au><au>Chen, Peng</au><au>Trout, Robert</au><au>Yao, Ma</au><au>Tzu-Ho Wu</au><au>Wu, Yuping</au><au>Liu, Nian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2019</date><risdate>2019</risdate><volume>7</volume><issue>18</issue><spage>11250</spage><epage>11256</epage><pages>11250-11256</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>During fast charging, the commonly used Li-ion battery anode material, graphite, has a significant shortcoming, that is, its discharge potential is too low to guarantee the safety of batteries. Li3VO4 (LVO), an alternative anode material, has a safe discharge potential window of 0.5 V to 1.0 V vs. Li+/Li and high theoretical capacity (∼394 mA h g−1). However, the poor conductivity of LVO (∼10−10 S m−1) constrains its further applications. In this paper, we innovatively embedded uniform LVO onto a multilayered material, Ti3C2Tx MXene, by a sol–gel method. The Ti3C2Tx MXene nanolayers with high electrical conductivity (2.4 × 105 S m−1) served as a scaffold to load LVO nanoparticles. The LVO/Ti3C2Tx MXene composite exhibited remarkable electrochemical performance in terms of rate capability and long-term cycle stability in comparison with bare LVO and commercial graphite anodes. The LVO/Ti3C2Tx MXene composite delivered an initial capacity of ∼187 mA h g−1 and 146 mA h g−1 after 1000 cycles at 5C, compared to bare LVO (an initial capacity of ∼41 mA h g−1 and ∼40 mA h g−1 after 1000 cycles at 5C) and graphite (∼71 mA h g−1 after 1000 cycles at 5C). This work opens new possibilities of anode materials for safe and fast-charging Li-ion batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9ta02037c</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2019, Vol.7 (18), p.11250-11256 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2221144203 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Batteries Charging Electrical conductivity Electrical resistivity Electrochemical analysis Electrochemistry Electrode materials Graphite Lithium Lithium-ion batteries MXenes Nanoparticles Rechargeable batteries Sol-gel processes |
title | A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A15%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20safe%20and%20fast-charging%20lithium-ion%20battery%20anode%20using%20MXene%20supported%20Li3VO4&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Yanghang&rft.date=2019&rft.volume=7&rft.issue=18&rft.spage=11250&rft.epage=11256&rft.pages=11250-11256&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c9ta02037c&rft_dat=%3Cproquest%3E2221144203%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221144203&rft_id=info:pmid/&rfr_iscdi=true |