Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d<4\)

Renormalization group (RG) and resummation techniques have been used in \(N\)-component \(\phi^4\) theories at fixed dimensions below four to determine the presence of non-trivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in \(d

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-09
Hauptverfasser: Sberveglieri, Giacomo, Serone, Marco, Spada, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sberveglieri, Giacomo
Serone, Marco
Spada, Gabriele
description Renormalization group (RG) and resummation techniques have been used in \(N\)-component \(\phi^4\) theories at fixed dimensions below four to determine the presence of non-trivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in \(d
doi_str_mv 10.48550/arxiv.1905.02122
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2221106526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221106526</sourcerecordid><originalsourceid>FETCH-proquest_journals_22211065263</originalsourceid><addsrcrecordid>eNqNit1qwjAYQMNgoGw-gHcf7GaC1uRr0yl4NefPtXpZlGg_aSRNuqTVuadX2B7AqwPnHMa6gkfJSEo-VP5HnyMx5jLiKBCfWBvjWAxGCWKLdUI4cc4x_UAp4zbbr8g6Xyqjf1WtnYX1oaCS4IsqsjnZA_VhtYC5cRdQNodP58nAuilLtddG11fQFrL3rCr0Nsl6sCnIeU3hT-eTu3tlz0dlAnX--cLe5rPNdDmovPtuKNS7k2u8vacdIgrBU4lp_Nh1AyWbSV4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221106526</pqid></control><display><type>article</type><title>Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d&lt;4\)</title><source>Free E- Journals</source><creator>Sberveglieri, Giacomo ; Serone, Marco ; Spada, Gabriele</creator><creatorcontrib>Sberveglieri, Giacomo ; Serone, Marco ; Spada, Gabriele</creatorcontrib><description>Renormalization group (RG) and resummation techniques have been used in \(N\)-component \(\phi^4\) theories at fixed dimensions below four to determine the presence of non-trivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in \(d&lt;4\) dimensions, the RG is entirely governed by renormalization scheme-dependent terms. We show that the known proofs of the Borel summability of observables depend on the renormalization scheme and apply only in "minimal" ones, equivalent in \(d=2\) to an operatorial normal ordering prescription, where the \(\beta\)-function is trivial to all orders in perturbation theory. The presence of a non-trivial fixed point can be unambiguously established by considering a physical observable, like the mass gap, with no need of RG techniques. Focusing on the \(N=1\), \(d=2\) \(\phi^4\) theory, we define a one-parameter family of renormalization schemes where Borel summability is guaranteed and study the accuracy on the determination of the critical exponent \(\nu\) as the scheme is varied. While the critical coupling shows a significant sensitivity on the scheme, the accuracy in \(\nu\) is essentially constant. As by-product of our analysis, we improve the determination of \(\nu\) obtained with RG methods by computing three more orders in perturbation theory.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1905.02122</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Coupling ; Dependence ; Perturbation theory</subject><ispartof>arXiv.org, 2019-09</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780,27904</link.rule.ids></links><search><creatorcontrib>Sberveglieri, Giacomo</creatorcontrib><creatorcontrib>Serone, Marco</creatorcontrib><creatorcontrib>Spada, Gabriele</creatorcontrib><title>Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d&lt;4\)</title><title>arXiv.org</title><description>Renormalization group (RG) and resummation techniques have been used in \(N\)-component \(\phi^4\) theories at fixed dimensions below four to determine the presence of non-trivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in \(d&lt;4\) dimensions, the RG is entirely governed by renormalization scheme-dependent terms. We show that the known proofs of the Borel summability of observables depend on the renormalization scheme and apply only in "minimal" ones, equivalent in \(d=2\) to an operatorial normal ordering prescription, where the \(\beta\)-function is trivial to all orders in perturbation theory. The presence of a non-trivial fixed point can be unambiguously established by considering a physical observable, like the mass gap, with no need of RG techniques. Focusing on the \(N=1\), \(d=2\) \(\phi^4\) theory, we define a one-parameter family of renormalization schemes where Borel summability is guaranteed and study the accuracy on the determination of the critical exponent \(\nu\) as the scheme is varied. While the critical coupling shows a significant sensitivity on the scheme, the accuracy in \(\nu\) is essentially constant. As by-product of our analysis, we improve the determination of \(\nu\) obtained with RG methods by computing three more orders in perturbation theory.</description><subject>Coupling</subject><subject>Dependence</subject><subject>Perturbation theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit1qwjAYQMNgoGw-gHcf7GaC1uRr0yl4NefPtXpZlGg_aSRNuqTVuadX2B7AqwPnHMa6gkfJSEo-VP5HnyMx5jLiKBCfWBvjWAxGCWKLdUI4cc4x_UAp4zbbr8g6Xyqjf1WtnYX1oaCS4IsqsjnZA_VhtYC5cRdQNodP58nAuilLtddG11fQFrL3rCr0Nsl6sCnIeU3hT-eTu3tlz0dlAnX--cLe5rPNdDmovPtuKNS7k2u8vacdIgrBU4lp_Nh1AyWbSV4</recordid><startdate>20190905</startdate><enddate>20190905</enddate><creator>Sberveglieri, Giacomo</creator><creator>Serone, Marco</creator><creator>Spada, Gabriele</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190905</creationdate><title>Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d&lt;4\)</title><author>Sberveglieri, Giacomo ; Serone, Marco ; Spada, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22211065263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coupling</topic><topic>Dependence</topic><topic>Perturbation theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Sberveglieri, Giacomo</creatorcontrib><creatorcontrib>Serone, Marco</creatorcontrib><creatorcontrib>Spada, Gabriele</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sberveglieri, Giacomo</au><au>Serone, Marco</au><au>Spada, Gabriele</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d&lt;4\)</atitle><jtitle>arXiv.org</jtitle><date>2019-09-05</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Renormalization group (RG) and resummation techniques have been used in \(N\)-component \(\phi^4\) theories at fixed dimensions below four to determine the presence of non-trivial IR fixed points and to compute the associated critical properties. Since the coupling constant is relevant in \(d&lt;4\) dimensions, the RG is entirely governed by renormalization scheme-dependent terms. We show that the known proofs of the Borel summability of observables depend on the renormalization scheme and apply only in "minimal" ones, equivalent in \(d=2\) to an operatorial normal ordering prescription, where the \(\beta\)-function is trivial to all orders in perturbation theory. The presence of a non-trivial fixed point can be unambiguously established by considering a physical observable, like the mass gap, with no need of RG techniques. Focusing on the \(N=1\), \(d=2\) \(\phi^4\) theory, we define a one-parameter family of renormalization schemes where Borel summability is guaranteed and study the accuracy on the determination of the critical exponent \(\nu\) as the scheme is varied. While the critical coupling shows a significant sensitivity on the scheme, the accuracy in \(\nu\) is essentially constant. As by-product of our analysis, we improve the determination of \(\nu\) obtained with RG methods by computing three more orders in perturbation theory.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1905.02122</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2221106526
source Free E- Journals
subjects Coupling
Dependence
Perturbation theory
title Renormalization Scheme Dependence, RG Flow and Borel Summability in \(\phi^4\) Theories in \(d<4\)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A28%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Renormalization%20Scheme%20Dependence,%20RG%20Flow%20and%20Borel%20Summability%20in%20%5C(%5Cphi%5E4%5C)%20Theories%20in%20%5C(d%3C4%5C)&rft.jtitle=arXiv.org&rft.au=Sberveglieri,%20Giacomo&rft.date=2019-09-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1905.02122&rft_dat=%3Cproquest%3E2221106526%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2221106526&rft_id=info:pmid/&rfr_iscdi=true