Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst

Lignocellulose is Earth’s most abundant form of biomass and its valorization to H 2 is a key objective for the generation of renewable fuels. Solar-driven photocatalytic reforming of lignocellulose to H 2 at ambient temperature offers a sustainable route towards this goal, but this reaction is curre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2017-03, Vol.2 (4), p.17021, Article 17021
Hauptverfasser: Wakerley, David W., Kuehnel, Moritz F., Orchard, Katherine L., Ly, Khoa H., Rosser, Timothy E., Reisner, Erwin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 17021
container_title Nature energy
container_volume 2
creator Wakerley, David W.
Kuehnel, Moritz F.
Orchard, Katherine L.
Ly, Khoa H.
Rosser, Timothy E.
Reisner, Erwin
description Lignocellulose is Earth’s most abundant form of biomass and its valorization to H 2 is a key objective for the generation of renewable fuels. Solar-driven photocatalytic reforming of lignocellulose to H 2 at ambient temperature offers a sustainable route towards this goal, but this reaction is currently limited to noble-metal-containing systems that operate with low activity under ultraviolet light. Here, we report the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. We show that basic conditions cause these dots to become coated with oxide/hydroxide in situ , presenting a strategy to improve their photocatalytic performance. The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H 2 through waste biomass oxidation. Photoreforming can produce H 2 through the simultaneous reduction of water and the oxidation of organic molecules, such as those derived from biomass, but cheaper and more active photocatalysts are required. This study shows that CdS/CdO x produces H 2 from unprocessed lignocellulose suspensions at high rates under solar illumination.
doi_str_mv 10.1038/nenergy.2017.21
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220816000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220816000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2661-cea05b31c4694fdeb79817fce5750dbb2f1fdd5563ecb0905b5754adc6cd1763</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOObOXgOeuyZpk7ZHKeqEwQ7bPaT50XVkyUw6df-9GRvoxdN78D7f7-P7BeARozlGRZ077XToT3OCcDUn-AZMCKJ1VtGS3f7Z78Esxh1CiDSE0BpPwHLtrQiZCsOndjBo48N-cD30Btqhd15qa4_WRw1HDxcEfg3jFgrYqnXeqtU3PGz96KUYhT3F8QHcGWGjnl3nFGxeXzbtIluu3t7b52UmCWM4k1og2hVYlqwpjdJd1dS4MlLTiiLVdcRgoxSlrNCyQ01i06EUSjKpcMWKKXi62B6C_zjqOPKdPwaXPnJCCKoxSwkTlV8oGXyMKRk_hGEvwoljxM-l8Wtp_FwaJzgp0EURE-l6HX59_5P8ABvXcYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220816000</pqid></control><display><type>article</type><title>Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst</title><source>SpringerLink_现刊</source><creator>Wakerley, David W. ; Kuehnel, Moritz F. ; Orchard, Katherine L. ; Ly, Khoa H. ; Rosser, Timothy E. ; Reisner, Erwin</creator><creatorcontrib>Wakerley, David W. ; Kuehnel, Moritz F. ; Orchard, Katherine L. ; Ly, Khoa H. ; Rosser, Timothy E. ; Reisner, Erwin</creatorcontrib><description>Lignocellulose is Earth’s most abundant form of biomass and its valorization to H 2 is a key objective for the generation of renewable fuels. Solar-driven photocatalytic reforming of lignocellulose to H 2 at ambient temperature offers a sustainable route towards this goal, but this reaction is currently limited to noble-metal-containing systems that operate with low activity under ultraviolet light. Here, we report the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. We show that basic conditions cause these dots to become coated with oxide/hydroxide in situ , presenting a strategy to improve their photocatalytic performance. The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H 2 through waste biomass oxidation. Photoreforming can produce H 2 through the simultaneous reduction of water and the oxidation of organic molecules, such as those derived from biomass, but cheaper and more active photocatalysts are required. This study shows that CdS/CdO x produces H 2 from unprocessed lignocellulose suspensions at high rates under solar illumination.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/nenergy.2017.21</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/890 ; 639/638/224/906/4060 ; Ambient temperature ; Aqueous solutions ; Basic oxides ; Biomass ; Cadmium ; Cadmium sulfide ; Cellulose ; Economics and Management ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Hemicellulose ; Irradiation ; Lignocellulose ; Noble metals ; Oxidation ; Photocatalysis ; Quantum dots ; Reforming ; Renewable and Green Energy ; Renewable fuels ; Room temperature ; Solar radiation ; Ultraviolet radiation</subject><ispartof>Nature energy, 2017-03, Vol.2 (4), p.17021, Article 17021</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2661-cea05b31c4694fdeb79817fce5750dbb2f1fdd5563ecb0905b5754adc6cd1763</citedby><cites>FETCH-LOGICAL-c2661-cea05b31c4694fdeb79817fce5750dbb2f1fdd5563ecb0905b5754adc6cd1763</cites><orcidid>0000-0001-8678-3779</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nenergy.2017.21$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nenergy.2017.21$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wakerley, David W.</creatorcontrib><creatorcontrib>Kuehnel, Moritz F.</creatorcontrib><creatorcontrib>Orchard, Katherine L.</creatorcontrib><creatorcontrib>Ly, Khoa H.</creatorcontrib><creatorcontrib>Rosser, Timothy E.</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><title>Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Lignocellulose is Earth’s most abundant form of biomass and its valorization to H 2 is a key objective for the generation of renewable fuels. Solar-driven photocatalytic reforming of lignocellulose to H 2 at ambient temperature offers a sustainable route towards this goal, but this reaction is currently limited to noble-metal-containing systems that operate with low activity under ultraviolet light. Here, we report the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. We show that basic conditions cause these dots to become coated with oxide/hydroxide in situ , presenting a strategy to improve their photocatalytic performance. The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H 2 through waste biomass oxidation. Photoreforming can produce H 2 through the simultaneous reduction of water and the oxidation of organic molecules, such as those derived from biomass, but cheaper and more active photocatalysts are required. This study shows that CdS/CdO x produces H 2 from unprocessed lignocellulose suspensions at high rates under solar illumination.</description><subject>639/301/299/890</subject><subject>639/638/224/906/4060</subject><subject>Ambient temperature</subject><subject>Aqueous solutions</subject><subject>Basic oxides</subject><subject>Biomass</subject><subject>Cadmium</subject><subject>Cadmium sulfide</subject><subject>Cellulose</subject><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Hemicellulose</subject><subject>Irradiation</subject><subject>Lignocellulose</subject><subject>Noble metals</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Quantum dots</subject><subject>Reforming</subject><subject>Renewable and Green Energy</subject><subject>Renewable fuels</subject><subject>Room temperature</subject><subject>Solar radiation</subject><subject>Ultraviolet radiation</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAUx4MoOObOXgOeuyZpk7ZHKeqEwQ7bPaT50XVkyUw6df-9GRvoxdN78D7f7-P7BeARozlGRZ077XToT3OCcDUn-AZMCKJ1VtGS3f7Z78Esxh1CiDSE0BpPwHLtrQiZCsOndjBo48N-cD30Btqhd15qa4_WRw1HDxcEfg3jFgrYqnXeqtU3PGz96KUYhT3F8QHcGWGjnl3nFGxeXzbtIluu3t7b52UmCWM4k1og2hVYlqwpjdJd1dS4MlLTiiLVdcRgoxSlrNCyQ01i06EUSjKpcMWKKXi62B6C_zjqOPKdPwaXPnJCCKoxSwkTlV8oGXyMKRk_hGEvwoljxM-l8Wtp_FwaJzgp0EURE-l6HX59_5P8ABvXcYY</recordid><startdate>20170313</startdate><enddate>20170313</enddate><creator>Wakerley, David W.</creator><creator>Kuehnel, Moritz F.</creator><creator>Orchard, Katherine L.</creator><creator>Ly, Khoa H.</creator><creator>Rosser, Timothy E.</creator><creator>Reisner, Erwin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8678-3779</orcidid></search><sort><creationdate>20170313</creationdate><title>Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst</title><author>Wakerley, David W. ; Kuehnel, Moritz F. ; Orchard, Katherine L. ; Ly, Khoa H. ; Rosser, Timothy E. ; Reisner, Erwin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2661-cea05b31c4694fdeb79817fce5750dbb2f1fdd5563ecb0905b5754adc6cd1763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/299/890</topic><topic>639/638/224/906/4060</topic><topic>Ambient temperature</topic><topic>Aqueous solutions</topic><topic>Basic oxides</topic><topic>Biomass</topic><topic>Cadmium</topic><topic>Cadmium sulfide</topic><topic>Cellulose</topic><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Hemicellulose</topic><topic>Irradiation</topic><topic>Lignocellulose</topic><topic>Noble metals</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Quantum dots</topic><topic>Reforming</topic><topic>Renewable and Green Energy</topic><topic>Renewable fuels</topic><topic>Room temperature</topic><topic>Solar radiation</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wakerley, David W.</creatorcontrib><creatorcontrib>Kuehnel, Moritz F.</creatorcontrib><creatorcontrib>Orchard, Katherine L.</creatorcontrib><creatorcontrib>Ly, Khoa H.</creatorcontrib><creatorcontrib>Rosser, Timothy E.</creatorcontrib><creatorcontrib>Reisner, Erwin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wakerley, David W.</au><au>Kuehnel, Moritz F.</au><au>Orchard, Katherine L.</au><au>Ly, Khoa H.</au><au>Rosser, Timothy E.</au><au>Reisner, Erwin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2017-03-13</date><risdate>2017</risdate><volume>2</volume><issue>4</issue><spage>17021</spage><pages>17021-</pages><artnum>17021</artnum><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Lignocellulose is Earth’s most abundant form of biomass and its valorization to H 2 is a key objective for the generation of renewable fuels. Solar-driven photocatalytic reforming of lignocellulose to H 2 at ambient temperature offers a sustainable route towards this goal, but this reaction is currently limited to noble-metal-containing systems that operate with low activity under ultraviolet light. Here, we report the light-driven photoreforming of cellulose, hemicellulose and lignin to H 2 using semiconducting cadmium sulfide quantum dots in alkaline aqueous solution. We show that basic conditions cause these dots to become coated with oxide/hydroxide in situ , presenting a strategy to improve their photocatalytic performance. The system operates under visible light, is stable beyond six days and is even able to reform unprocessed lignocellulose, such as wood and paper, under solar irradiation at room temperature, presenting an inexpensive route to drive aqueous proton reduction to H 2 through waste biomass oxidation. Photoreforming can produce H 2 through the simultaneous reduction of water and the oxidation of organic molecules, such as those derived from biomass, but cheaper and more active photocatalysts are required. This study shows that CdS/CdO x produces H 2 from unprocessed lignocellulose suspensions at high rates under solar illumination.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nenergy.2017.21</doi><orcidid>https://orcid.org/0000-0001-8678-3779</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2017-03, Vol.2 (4), p.17021, Article 17021
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2220816000
source SpringerLink_现刊
subjects 639/301/299/890
639/638/224/906/4060
Ambient temperature
Aqueous solutions
Basic oxides
Biomass
Cadmium
Cadmium sulfide
Cellulose
Economics and Management
Energy
Energy Policy
Energy Storage
Energy Systems
Hemicellulose
Irradiation
Lignocellulose
Noble metals
Oxidation
Photocatalysis
Quantum dots
Reforming
Renewable and Green Energy
Renewable fuels
Room temperature
Solar radiation
Ultraviolet radiation
title Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar-driven%20reforming%20of%20lignocellulose%20to%20H2%20with%20a%20CdS/CdOx%20photocatalyst&rft.jtitle=Nature%20energy&rft.au=Wakerley,%20David%20W.&rft.date=2017-03-13&rft.volume=2&rft.issue=4&rft.spage=17021&rft.pages=17021-&rft.artnum=17021&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/nenergy.2017.21&rft_dat=%3Cproquest_cross%3E2220816000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220816000&rft_id=info:pmid/&rfr_iscdi=true