Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries

Non-aqueous metal–oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2017-03, Vol.2 (5), p.17036, Article 17036
Hauptverfasser: Mahne, Nika, Schafzahl, Bettina, Leypold, Christian, Leypold, Mario, Grumm, Sandra, Leitgeb, Anita, Strohmeier, Gernot A., Wilkening, Martin, Fontaine, Olivier, Kramer, Denis, Slugovc, Christian, Borisov, Sergey M., Freunberger, Stefan A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 17036
container_title Nature energy
container_volume 2
creator Mahne, Nika
Schafzahl, Bettina
Leypold, Christian
Leypold, Mario
Grumm, Sandra
Leitgeb, Anita
Strohmeier, Gernot A.
Wilkening, Martin
Fontaine, Olivier
Kramer, Denis
Slugovc, Christian
Borisov, Sergey M.
Freunberger, Stefan A.
description Non-aqueous metal–oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium–oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal–oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation. The application of Li–O 2 batteries is hindered by severe parasitic reactions in battery cycling. Here the authors show that the highly reactive singlet oxygen is the main cause for the electrolyte and carbon electrode degradation on discharge and charge.
doi_str_mv 10.1038/nenergy.2017.36
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220814887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220814887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-b12bf22d2f480c12130df4429ee46349880a4d2ada1ac67f54f7f752058465873</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpzGqJOa3tOIk7ooo_qRIDMFu3jh1cpUmwHUE23oE35Eka00qwMN07nPPdew5Cl5TMKUnFotGNdtUwZ4QW8zQ_QRNGMpEUGc9P_-znaOb9lhDCloxlgk7Q-5NtqloH3H4MlW5wFUEQbNtg8BjwDratwwp6r7EZtw4ceBuswk6DijqPy96NEKwGVcfZGgyda6OmtuHV9rvvz68jfgMhaGe1v0BnBmqvZ8c5RS-3N8-r-2T9ePewul4nKqUkJBvKNoaxkhkuiKKMpqQ0nLOl1jxP-VIIArxkUAIFlRcm46YwRRYD8zwTRTpFVwfu-NFbr32Q27Z3zXhSMsaIoFz8qBYHlXKt904b2Tm7AzdISmQsWB4LlrFgmeajgxwcvovhtfvl_mfZA-YDgv4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220814887</pqid></control><display><type>article</type><title>Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries</title><source>SpringerLink Journals</source><creator>Mahne, Nika ; Schafzahl, Bettina ; Leypold, Christian ; Leypold, Mario ; Grumm, Sandra ; Leitgeb, Anita ; Strohmeier, Gernot A. ; Wilkening, Martin ; Fontaine, Olivier ; Kramer, Denis ; Slugovc, Christian ; Borisov, Sergey M. ; Freunberger, Stefan A.</creator><creatorcontrib>Mahne, Nika ; Schafzahl, Bettina ; Leypold, Christian ; Leypold, Mario ; Grumm, Sandra ; Leitgeb, Anita ; Strohmeier, Gernot A. ; Wilkening, Martin ; Fontaine, Olivier ; Kramer, Denis ; Slugovc, Christian ; Borisov, Sergey M. ; Freunberger, Stefan A.</creatorcontrib><description>Non-aqueous metal–oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium–oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal–oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation. The application of Li–O 2 batteries is hindered by severe parasitic reactions in battery cycling. Here the authors show that the highly reactive singlet oxygen is the main cause for the electrolyte and carbon electrode degradation on discharge and charge.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/nenergy.2017.36</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/299/161/891 ; 639/4077/4079 ; 639/638/11/874 ; Cycles ; Decomposition reactions ; Discharge ; Economics and Management ; Energy ; Energy Policy ; Energy Storage ; Energy Systems ; Lithium ; Lithium batteries ; Metal air batteries ; Metal oxides ; Oxygen ; Reaction products ; Renewable and Green Energy ; Side reactions ; Singlet oxygen</subject><ispartof>Nature energy, 2017-03, Vol.2 (5), p.17036, Article 17036</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-b12bf22d2f480c12130df4429ee46349880a4d2ada1ac67f54f7f752058465873</citedby><cites>FETCH-LOGICAL-c310t-b12bf22d2f480c12130df4429ee46349880a4d2ada1ac67f54f7f752058465873</cites><orcidid>0000-0003-0605-1047 ; 0000-0003-2902-5319 ; 0000-0001-9706-4892</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nenergy.2017.36$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nenergy.2017.36$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Schafzahl, Bettina</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Leypold, Mario</creatorcontrib><creatorcontrib>Grumm, Sandra</creatorcontrib><creatorcontrib>Leitgeb, Anita</creatorcontrib><creatorcontrib>Strohmeier, Gernot A.</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Kramer, Denis</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Borisov, Sergey M.</creatorcontrib><creatorcontrib>Freunberger, Stefan A.</creatorcontrib><title>Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>Non-aqueous metal–oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium–oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal–oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation. The application of Li–O 2 batteries is hindered by severe parasitic reactions in battery cycling. Here the authors show that the highly reactive singlet oxygen is the main cause for the electrolyte and carbon electrode degradation on discharge and charge.</description><subject>639/301/299/161/891</subject><subject>639/4077/4079</subject><subject>639/638/11/874</subject><subject>Cycles</subject><subject>Decomposition reactions</subject><subject>Discharge</subject><subject>Economics and Management</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Metal air batteries</subject><subject>Metal oxides</subject><subject>Oxygen</subject><subject>Reaction products</subject><subject>Renewable and Green Energy</subject><subject>Side reactions</subject><subject>Singlet oxygen</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kL1OwzAUhS0EElXpzGqJOa3tOIk7ooo_qRIDMFu3jh1cpUmwHUE23oE35Eka00qwMN07nPPdew5Cl5TMKUnFotGNdtUwZ4QW8zQ_QRNGMpEUGc9P_-znaOb9lhDCloxlgk7Q-5NtqloH3H4MlW5wFUEQbNtg8BjwDratwwp6r7EZtw4ceBuswk6DijqPy96NEKwGVcfZGgyda6OmtuHV9rvvz68jfgMhaGe1v0BnBmqvZ8c5RS-3N8-r-2T9ePewul4nKqUkJBvKNoaxkhkuiKKMpqQ0nLOl1jxP-VIIArxkUAIFlRcm46YwRRYD8zwTRTpFVwfu-NFbr32Q27Z3zXhSMsaIoFz8qBYHlXKt904b2Tm7AzdISmQsWB4LlrFgmeajgxwcvovhtfvl_mfZA-YDgv4</recordid><startdate>20170320</startdate><enddate>20170320</enddate><creator>Mahne, Nika</creator><creator>Schafzahl, Bettina</creator><creator>Leypold, Christian</creator><creator>Leypold, Mario</creator><creator>Grumm, Sandra</creator><creator>Leitgeb, Anita</creator><creator>Strohmeier, Gernot A.</creator><creator>Wilkening, Martin</creator><creator>Fontaine, Olivier</creator><creator>Kramer, Denis</creator><creator>Slugovc, Christian</creator><creator>Borisov, Sergey M.</creator><creator>Freunberger, Stefan A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0605-1047</orcidid><orcidid>https://orcid.org/0000-0003-2902-5319</orcidid><orcidid>https://orcid.org/0000-0001-9706-4892</orcidid></search><sort><creationdate>20170320</creationdate><title>Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries</title><author>Mahne, Nika ; Schafzahl, Bettina ; Leypold, Christian ; Leypold, Mario ; Grumm, Sandra ; Leitgeb, Anita ; Strohmeier, Gernot A. ; Wilkening, Martin ; Fontaine, Olivier ; Kramer, Denis ; Slugovc, Christian ; Borisov, Sergey M. ; Freunberger, Stefan A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-b12bf22d2f480c12130df4429ee46349880a4d2ada1ac67f54f7f752058465873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>639/301/299/161/891</topic><topic>639/4077/4079</topic><topic>639/638/11/874</topic><topic>Cycles</topic><topic>Decomposition reactions</topic><topic>Discharge</topic><topic>Economics and Management</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Metal air batteries</topic><topic>Metal oxides</topic><topic>Oxygen</topic><topic>Reaction products</topic><topic>Renewable and Green Energy</topic><topic>Side reactions</topic><topic>Singlet oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahne, Nika</creatorcontrib><creatorcontrib>Schafzahl, Bettina</creatorcontrib><creatorcontrib>Leypold, Christian</creatorcontrib><creatorcontrib>Leypold, Mario</creatorcontrib><creatorcontrib>Grumm, Sandra</creatorcontrib><creatorcontrib>Leitgeb, Anita</creatorcontrib><creatorcontrib>Strohmeier, Gernot A.</creatorcontrib><creatorcontrib>Wilkening, Martin</creatorcontrib><creatorcontrib>Fontaine, Olivier</creatorcontrib><creatorcontrib>Kramer, Denis</creatorcontrib><creatorcontrib>Slugovc, Christian</creatorcontrib><creatorcontrib>Borisov, Sergey M.</creatorcontrib><creatorcontrib>Freunberger, Stefan A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahne, Nika</au><au>Schafzahl, Bettina</au><au>Leypold, Christian</au><au>Leypold, Mario</au><au>Grumm, Sandra</au><au>Leitgeb, Anita</au><au>Strohmeier, Gernot A.</au><au>Wilkening, Martin</au><au>Fontaine, Olivier</au><au>Kramer, Denis</au><au>Slugovc, Christian</au><au>Borisov, Sergey M.</au><au>Freunberger, Stefan A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2017-03-20</date><risdate>2017</risdate><volume>2</volume><issue>5</issue><spage>17036</spage><pages>17036-</pages><artnum>17036</artnum><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>Non-aqueous metal–oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium–oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal–oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation. The application of Li–O 2 batteries is hindered by severe parasitic reactions in battery cycling. Here the authors show that the highly reactive singlet oxygen is the main cause for the electrolyte and carbon electrode degradation on discharge and charge.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nenergy.2017.36</doi><orcidid>https://orcid.org/0000-0003-0605-1047</orcidid><orcidid>https://orcid.org/0000-0003-2902-5319</orcidid><orcidid>https://orcid.org/0000-0001-9706-4892</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2017-03, Vol.2 (5), p.17036, Article 17036
issn 2058-7546
2058-7546
language eng
recordid cdi_proquest_journals_2220814887
source SpringerLink Journals
subjects 639/301/299/161/891
639/4077/4079
639/638/11/874
Cycles
Decomposition reactions
Discharge
Economics and Management
Energy
Energy Policy
Energy Storage
Energy Systems
Lithium
Lithium batteries
Metal air batteries
Metal oxides
Oxygen
Reaction products
Renewable and Green Energy
Side reactions
Singlet oxygen
title Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A53%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singlet%20oxygen%20generation%20as%20a%20major%20cause%20for%20parasitic%20reactions%20during%20cycling%20of%20aprotic%20lithium%E2%80%93oxygen%20batteries&rft.jtitle=Nature%20energy&rft.au=Mahne,%20Nika&rft.date=2017-03-20&rft.volume=2&rft.issue=5&rft.spage=17036&rft.pages=17036-&rft.artnum=17036&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/nenergy.2017.36&rft_dat=%3Cproquest_cross%3E2220814887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220814887&rft_id=info:pmid/&rfr_iscdi=true