Recent developments around partial actions

We give an overview of publications on partial actions and related concepts, paying main attention to some recent developments on diverse aspects of the theory, such as partial actions of semigroups, of Hopf algebras and groupoids, the globalization problem for partial actions, Morita theory of part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2019-06, Vol.13 (1), p.195-247
1. Verfasser: Dokuchaev, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 247
container_issue 1
container_start_page 195
container_title São Paulo Journal of Mathematical Sciences
container_volume 13
creator Dokuchaev, M.
description We give an overview of publications on partial actions and related concepts, paying main attention to some recent developments on diverse aspects of the theory, such as partial actions of semigroups, of Hopf algebras and groupoids, the globalization problem for partial actions, Morita theory of partial actions, twisted partial actions, partial projective representations and the Schur multiplier, cohomology theories related to partial actions, Galois theoretic results, ring theoretic properties and ideals of partial crossed products. Among the applications we consider in more detail the case of the Carlsen-Matsumoto C ∗ -algebra related to an arbitrary subshift, but also mention many others. The total number of publications directly related to partial actions and partial representations is more than 130, so that it is impossible even to describe briefly the content of all of them within the constraints of the present survey. Thus, the majority of them are only cited with respects to specific topics, trying to give an idea about the involved matter. In order to complete the picture, we refer the reader to a recent book by Ruy Exel, to our previous surveys, as well as to those by other authors.
doi_str_mv 10.1007/s40863-018-0087-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220801573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220801573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-231685e6d13a910fe3dbac4f8e582631cd6c40c2bef0f379080ec058226b22273</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouKz7AbwVvAnRSdLmz1EWdYUFQfQc0nQqXbptTbpCv70pFTw5lxl4782DHyHXDO4YgLqPOWgpKDBNAbSi0xlZccEkNcD1OVkxozmVBtQl2cR4gDRFrkwBK3L7hh67MavwG9t-OKY7Zi70p67KBhfGxrWZ82PTd_GKXNSujbj53Wvy8fT4vt3R_evzy_ZhT70ozEjnYl2grJhwhkGNoiqdz2uNheZSMF9Jn4PnJdZQC2VAA3pIGpcl51yJNblZ_g6h_zphHO2hP4UuVdqkJzsrlEgutrh86GMMWNshNEcXJsvAzlTsQsUmKnamYqeU4UsmJm_3ieHv8_-hH31SY54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220801573</pqid></control><display><type>article</type><title>Recent developments around partial actions</title><source>SpringerNature Journals</source><creator>Dokuchaev, M.</creator><creatorcontrib>Dokuchaev, M.</creatorcontrib><description>We give an overview of publications on partial actions and related concepts, paying main attention to some recent developments on diverse aspects of the theory, such as partial actions of semigroups, of Hopf algebras and groupoids, the globalization problem for partial actions, Morita theory of partial actions, twisted partial actions, partial projective representations and the Schur multiplier, cohomology theories related to partial actions, Galois theoretic results, ring theoretic properties and ideals of partial crossed products. Among the applications we consider in more detail the case of the Carlsen-Matsumoto C ∗ -algebra related to an arbitrary subshift, but also mention many others. The total number of publications directly related to partial actions and partial representations is more than 130, so that it is impossible even to describe briefly the content of all of them within the constraints of the present survey. Thus, the majority of them are only cited with respects to specific topics, trying to give an idea about the involved matter. In order to complete the picture, we refer the reader to a recent book by Ruy Exel, to our previous surveys, as well as to those by other authors.</description><identifier>ISSN: 1982-6907</identifier><identifier>EISSN: 2316-9028</identifier><identifier>EISSN: 2306-9028</identifier><identifier>DOI: 10.1007/s40863-018-0087-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Documents ; Globalization ; Homology ; Mathematics ; Mathematics and Statistics ; Representations ; Survey</subject><ispartof>São Paulo Journal of Mathematical Sciences, 2019-06, Vol.13 (1), p.195-247</ispartof><rights>Instituto de Matemática e Estatística da Universidade de São Paulo 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-231685e6d13a910fe3dbac4f8e582631cd6c40c2bef0f379080ec058226b22273</citedby><cites>FETCH-LOGICAL-c359t-231685e6d13a910fe3dbac4f8e582631cd6c40c2bef0f379080ec058226b22273</cites><orcidid>0000-0003-1250-4831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40863-018-0087-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40863-018-0087-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Dokuchaev, M.</creatorcontrib><title>Recent developments around partial actions</title><title>São Paulo Journal of Mathematical Sciences</title><addtitle>São Paulo J. Math. Sci</addtitle><description>We give an overview of publications on partial actions and related concepts, paying main attention to some recent developments on diverse aspects of the theory, such as partial actions of semigroups, of Hopf algebras and groupoids, the globalization problem for partial actions, Morita theory of partial actions, twisted partial actions, partial projective representations and the Schur multiplier, cohomology theories related to partial actions, Galois theoretic results, ring theoretic properties and ideals of partial crossed products. Among the applications we consider in more detail the case of the Carlsen-Matsumoto C ∗ -algebra related to an arbitrary subshift, but also mention many others. The total number of publications directly related to partial actions and partial representations is more than 130, so that it is impossible even to describe briefly the content of all of them within the constraints of the present survey. Thus, the majority of them are only cited with respects to specific topics, trying to give an idea about the involved matter. In order to complete the picture, we refer the reader to a recent book by Ruy Exel, to our previous surveys, as well as to those by other authors.</description><subject>Documents</subject><subject>Globalization</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Representations</subject><subject>Survey</subject><issn>1982-6907</issn><issn>2316-9028</issn><issn>2306-9028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouKz7AbwVvAnRSdLmz1EWdYUFQfQc0nQqXbptTbpCv70pFTw5lxl4782DHyHXDO4YgLqPOWgpKDBNAbSi0xlZccEkNcD1OVkxozmVBtQl2cR4gDRFrkwBK3L7hh67MavwG9t-OKY7Zi70p67KBhfGxrWZ82PTd_GKXNSujbj53Wvy8fT4vt3R_evzy_ZhT70ozEjnYl2grJhwhkGNoiqdz2uNheZSMF9Jn4PnJdZQC2VAA3pIGpcl51yJNblZ_g6h_zphHO2hP4UuVdqkJzsrlEgutrh86GMMWNshNEcXJsvAzlTsQsUmKnamYqeU4UsmJm_3ieHv8_-hH31SY54</recordid><startdate>20190617</startdate><enddate>20190617</enddate><creator>Dokuchaev, M.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1250-4831</orcidid></search><sort><creationdate>20190617</creationdate><title>Recent developments around partial actions</title><author>Dokuchaev, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-231685e6d13a910fe3dbac4f8e582631cd6c40c2bef0f379080ec058226b22273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Documents</topic><topic>Globalization</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Representations</topic><topic>Survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dokuchaev, M.</creatorcontrib><collection>CrossRef</collection><jtitle>São Paulo Journal of Mathematical Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dokuchaev, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent developments around partial actions</atitle><jtitle>São Paulo Journal of Mathematical Sciences</jtitle><stitle>São Paulo J. Math. Sci</stitle><date>2019-06-17</date><risdate>2019</risdate><volume>13</volume><issue>1</issue><spage>195</spage><epage>247</epage><pages>195-247</pages><issn>1982-6907</issn><eissn>2316-9028</eissn><eissn>2306-9028</eissn><abstract>We give an overview of publications on partial actions and related concepts, paying main attention to some recent developments on diverse aspects of the theory, such as partial actions of semigroups, of Hopf algebras and groupoids, the globalization problem for partial actions, Morita theory of partial actions, twisted partial actions, partial projective representations and the Schur multiplier, cohomology theories related to partial actions, Galois theoretic results, ring theoretic properties and ideals of partial crossed products. Among the applications we consider in more detail the case of the Carlsen-Matsumoto C ∗ -algebra related to an arbitrary subshift, but also mention many others. The total number of publications directly related to partial actions and partial representations is more than 130, so that it is impossible even to describe briefly the content of all of them within the constraints of the present survey. Thus, the majority of them are only cited with respects to specific topics, trying to give an idea about the involved matter. In order to complete the picture, we refer the reader to a recent book by Ruy Exel, to our previous surveys, as well as to those by other authors.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40863-018-0087-y</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0003-1250-4831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1982-6907
ispartof São Paulo Journal of Mathematical Sciences, 2019-06, Vol.13 (1), p.195-247
issn 1982-6907
2316-9028
2306-9028
language eng
recordid cdi_proquest_journals_2220801573
source SpringerNature Journals
subjects Documents
Globalization
Homology
Mathematics
Mathematics and Statistics
Representations
Survey
title Recent developments around partial actions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20developments%20around%20partial%20actions&rft.jtitle=S%C3%A3o%20Paulo%20Journal%20of%20Mathematical%20Sciences&rft.au=Dokuchaev,%20M.&rft.date=2019-06-17&rft.volume=13&rft.issue=1&rft.spage=195&rft.epage=247&rft.pages=195-247&rft.issn=1982-6907&rft.eissn=2316-9028&rft_id=info:doi/10.1007/s40863-018-0087-y&rft_dat=%3Cproquest_cross%3E2220801573%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220801573&rft_id=info:pmid/&rfr_iscdi=true