Inverse optimal control of a class of affine nonlinear systems

This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2019-06, Vol.41 (9), p.2637-2650
Hauptverfasser: Prasanna, Parvathy, Jacob, Jeevamma, Nandakumar, Mattida Ponnadiyil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2650
container_issue 9
container_start_page 2637
container_title Transactions of the Institute of Measurement and Control
container_volume 41
creator Prasanna, Parvathy
Jacob, Jeevamma
Nandakumar, Mattida Ponnadiyil
description This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix, A ( x ) . Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form V ( x ) = x T P ( x ) x , while offering a benevolent choice for the gain matrix P ( x ) , in the CLF. The direct relationship between the gain matrix P ( x ) and state weighing matrix Q ( x ) ensures optimization of an equivalent s ( x ) = x T Q ( x ) x . This feature enables one to rightfully choose the gain matrix P ( x ) as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.
doi_str_mv 10.1177/0142331218806338
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220720860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331218806338</sage_id><sourcerecordid>2220720860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaJgHd27DLiu3jyax0aQwcfAgBtdl5gmMkOnqbkdYf7e1gqC4OpcOI_LOYRcMrhmTOsbYJILwTgzBpQQ5ogUTGpdglD2mBQTXU78KTlD3AKAlEoW5HbVfYaMgaZ-2OxcS33qhpxamiJ11LcO8fuMcdMF2qWuHdFligccwg7PyUl0LYaLH1yQ14f7l-VTuX5-XC3v1qUXYIdSawWgZWMbz5mPpmHWvpkqcq4q8E5YBsI2wRgZrZRGu8pKq6zlXkQnvBQLcjXn9jl97AMO9Tbtcze-rDnnoDkYBaMKZpXPCTGHWPd5LJUPNYN6Wqn-u9JoKWcLuvfwG_qv_gu5vGSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220720860</pqid></control><display><type>article</type><title>Inverse optimal control of a class of affine nonlinear systems</title><source>SAGE Complete A-Z List</source><creator>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</creator><creatorcontrib>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</creatorcontrib><description>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix, A ( x ) . Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form V ( x ) = x T P ( x ) x , while offering a benevolent choice for the gain matrix P ( x ) , in the CLF. The direct relationship between the gain matrix P ( x ) and state weighing matrix Q ( x ) ensures optimization of an equivalent s ( x ) = x T Q ( x ) x . This feature enables one to rightfully choose the gain matrix P ( x ) as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331218806338</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Feedback control ; Formulations ; Liapunov functions ; Linear control ; Nonlinear systems ; Optimal control ; Optimization ; Permanent magnets ; Polynomials ; Speed control ; Synchronous motors</subject><ispartof>Transactions of the Institute of Measurement and Control, 2019-06, Vol.41 (9), p.2637-2650</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</citedby><cites>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331218806338$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331218806338$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Prasanna, Parvathy</creatorcontrib><creatorcontrib>Jacob, Jeevamma</creatorcontrib><creatorcontrib>Nandakumar, Mattida Ponnadiyil</creatorcontrib><title>Inverse optimal control of a class of affine nonlinear systems</title><title>Transactions of the Institute of Measurement and Control</title><description>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix, A ( x ) . Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form V ( x ) = x T P ( x ) x , while offering a benevolent choice for the gain matrix P ( x ) , in the CLF. The direct relationship between the gain matrix P ( x ) and state weighing matrix Q ( x ) ensures optimization of an equivalent s ( x ) = x T Q ( x ) x . This feature enables one to rightfully choose the gain matrix P ( x ) as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</description><subject>Feedback control</subject><subject>Formulations</subject><subject>Liapunov functions</subject><subject>Linear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Polynomials</subject><subject>Speed control</subject><subject>Synchronous motors</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaJgHd27DLiu3jyax0aQwcfAgBtdl5gmMkOnqbkdYf7e1gqC4OpcOI_LOYRcMrhmTOsbYJILwTgzBpQQ5ogUTGpdglD2mBQTXU78KTlD3AKAlEoW5HbVfYaMgaZ-2OxcS33qhpxamiJ11LcO8fuMcdMF2qWuHdFligccwg7PyUl0LYaLH1yQ14f7l-VTuX5-XC3v1qUXYIdSawWgZWMbz5mPpmHWvpkqcq4q8E5YBsI2wRgZrZRGu8pKq6zlXkQnvBQLcjXn9jl97AMO9Tbtcze-rDnnoDkYBaMKZpXPCTGHWPd5LJUPNYN6Wqn-u9JoKWcLuvfwG_qv_gu5vGSL</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Prasanna, Parvathy</creator><creator>Jacob, Jeevamma</creator><creator>Nandakumar, Mattida Ponnadiyil</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201906</creationdate><title>Inverse optimal control of a class of affine nonlinear systems</title><author>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Feedback control</topic><topic>Formulations</topic><topic>Liapunov functions</topic><topic>Linear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Polynomials</topic><topic>Speed control</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanna, Parvathy</creatorcontrib><creatorcontrib>Jacob, Jeevamma</creatorcontrib><creatorcontrib>Nandakumar, Mattida Ponnadiyil</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanna, Parvathy</au><au>Jacob, Jeevamma</au><au>Nandakumar, Mattida Ponnadiyil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse optimal control of a class of affine nonlinear systems</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2019-06</date><risdate>2019</risdate><volume>41</volume><issue>9</issue><spage>2637</spage><epage>2650</epage><pages>2637-2650</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix, A ( x ) . Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form V ( x ) = x T P ( x ) x , while offering a benevolent choice for the gain matrix P ( x ) , in the CLF. The direct relationship between the gain matrix P ( x ) and state weighing matrix Q ( x ) ensures optimization of an equivalent s ( x ) = x T Q ( x ) x . This feature enables one to rightfully choose the gain matrix P ( x ) as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331218806338</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2019-06, Vol.41 (9), p.2637-2650
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_2220720860
source SAGE Complete A-Z List
subjects Feedback control
Formulations
Liapunov functions
Linear control
Nonlinear systems
Optimal control
Optimization
Permanent magnets
Polynomials
Speed control
Synchronous motors
title Inverse optimal control of a class of affine nonlinear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20optimal%20control%20of%20a%20class%20of%20affine%20nonlinear%20systems&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Prasanna,%20Parvathy&rft.date=2019-06&rft.volume=41&rft.issue=9&rft.spage=2637&rft.epage=2650&rft.pages=2637-2650&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331218806338&rft_dat=%3Cproquest_cross%3E2220720860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220720860&rft_id=info:pmid/&rft_sage_id=10.1177_0142331218806338&rfr_iscdi=true