Inverse optimal control of a class of affine nonlinear systems
This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2019-06, Vol.41 (9), p.2637-2650 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2650 |
---|---|
container_issue | 9 |
container_start_page | 2637 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 41 |
creator | Prasanna, Parvathy Jacob, Jeevamma Nandakumar, Mattida Ponnadiyil |
description | This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix,
A
(
x
)
. Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form
V
(
x
)
=
x
T
P
(
x
)
x
, while offering a benevolent choice for the gain matrix
P
(
x
)
, in the CLF. The direct relationship between the gain matrix
P
(
x
)
and state weighing matrix
Q
(
x
)
ensures optimization of an equivalent
s
(
x
)
=
x
T
Q
(
x
)
x
. This feature enables one to rightfully choose the gain matrix
P
(
x
)
as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology. |
doi_str_mv | 10.1177/0142331218806338 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220720860</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0142331218806338</sage_id><sourcerecordid>2220720860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</originalsourceid><addsrcrecordid>eNp1UMtKxDAUDaJgHd27DLiu3jyax0aQwcfAgBtdl5gmMkOnqbkdYf7e1gqC4OpcOI_LOYRcMrhmTOsbYJILwTgzBpQQ5ogUTGpdglD2mBQTXU78KTlD3AKAlEoW5HbVfYaMgaZ-2OxcS33qhpxamiJ11LcO8fuMcdMF2qWuHdFligccwg7PyUl0LYaLH1yQ14f7l-VTuX5-XC3v1qUXYIdSawWgZWMbz5mPpmHWvpkqcq4q8E5YBsI2wRgZrZRGu8pKq6zlXkQnvBQLcjXn9jl97AMO9Tbtcze-rDnnoDkYBaMKZpXPCTGHWPd5LJUPNYN6Wqn-u9JoKWcLuvfwG_qv_gu5vGSL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220720860</pqid></control><display><type>article</type><title>Inverse optimal control of a class of affine nonlinear systems</title><source>SAGE Complete A-Z List</source><creator>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</creator><creatorcontrib>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</creatorcontrib><description>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix,
A
(
x
)
. Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form
V
(
x
)
=
x
T
P
(
x
)
x
, while offering a benevolent choice for the gain matrix
P
(
x
)
, in the CLF. The direct relationship between the gain matrix
P
(
x
)
and state weighing matrix
Q
(
x
)
ensures optimization of an equivalent
s
(
x
)
=
x
T
Q
(
x
)
x
. This feature enables one to rightfully choose the gain matrix
P
(
x
)
as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/0142331218806338</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Feedback control ; Formulations ; Liapunov functions ; Linear control ; Nonlinear systems ; Optimal control ; Optimization ; Permanent magnets ; Polynomials ; Speed control ; Synchronous motors</subject><ispartof>Transactions of the Institute of Measurement and Control, 2019-06, Vol.41 (9), p.2637-2650</ispartof><rights>The Author(s) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</citedby><cites>FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0142331218806338$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0142331218806338$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Prasanna, Parvathy</creatorcontrib><creatorcontrib>Jacob, Jeevamma</creatorcontrib><creatorcontrib>Nandakumar, Mattida Ponnadiyil</creatorcontrib><title>Inverse optimal control of a class of affine nonlinear systems</title><title>Transactions of the Institute of Measurement and Control</title><description>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix,
A
(
x
)
. Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form
V
(
x
)
=
x
T
P
(
x
)
x
, while offering a benevolent choice for the gain matrix
P
(
x
)
, in the CLF. The direct relationship between the gain matrix
P
(
x
)
and state weighing matrix
Q
(
x
)
ensures optimization of an equivalent
s
(
x
)
=
x
T
Q
(
x
)
x
. This feature enables one to rightfully choose the gain matrix
P
(
x
)
as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</description><subject>Feedback control</subject><subject>Formulations</subject><subject>Liapunov functions</subject><subject>Linear control</subject><subject>Nonlinear systems</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Polynomials</subject><subject>Speed control</subject><subject>Synchronous motors</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAUDaJgHd27DLiu3jyax0aQwcfAgBtdl5gmMkOnqbkdYf7e1gqC4OpcOI_LOYRcMrhmTOsbYJILwTgzBpQQ5ogUTGpdglD2mBQTXU78KTlD3AKAlEoW5HbVfYaMgaZ-2OxcS33qhpxamiJ11LcO8fuMcdMF2qWuHdFligccwg7PyUl0LYaLH1yQ14f7l-VTuX5-XC3v1qUXYIdSawWgZWMbz5mPpmHWvpkqcq4q8E5YBsI2wRgZrZRGu8pKq6zlXkQnvBQLcjXn9jl97AMO9Tbtcze-rDnnoDkYBaMKZpXPCTGHWPd5LJUPNYN6Wqn-u9JoKWcLuvfwG_qv_gu5vGSL</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Prasanna, Parvathy</creator><creator>Jacob, Jeevamma</creator><creator>Nandakumar, Mattida Ponnadiyil</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201906</creationdate><title>Inverse optimal control of a class of affine nonlinear systems</title><author>Prasanna, Parvathy ; Jacob, Jeevamma ; Nandakumar, Mattida Ponnadiyil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-7760074d9dc21cf8d199b85f22650ca391039de884f94487a59496992c3fa3c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Feedback control</topic><topic>Formulations</topic><topic>Liapunov functions</topic><topic>Linear control</topic><topic>Nonlinear systems</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Polynomials</topic><topic>Speed control</topic><topic>Synchronous motors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasanna, Parvathy</creatorcontrib><creatorcontrib>Jacob, Jeevamma</creatorcontrib><creatorcontrib>Nandakumar, Mattida Ponnadiyil</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasanna, Parvathy</au><au>Jacob, Jeevamma</au><au>Nandakumar, Mattida Ponnadiyil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse optimal control of a class of affine nonlinear systems</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2019-06</date><risdate>2019</risdate><volume>41</volume><issue>9</issue><spage>2637</spage><epage>2650</epage><pages>2637-2650</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>This paper proposes a systematic formulation of inverse optimal control (IOC) law based on a rather straightforward reduction of control Lyapunov function (CLF), applicable to a class of second-order nonlinear systems affine in the input. This method exploits the additional design degrees of freedom resulting from the non-uniqueness of the state dependent coefficient (SDC) formulation, which is widely used in pseudo-linear control techniques. The applicability of the proposed approach necessitates an apparently effortless SDC formulation satisfying an SDC matrix criterion in terms of the structure and characteristics of the state matrix,
A
(
x
)
. Subsequently, a sufficient condition for the global asymptotic stability (g.a.s) of the closed-loop system is established. The SDC formulations conforming to the sufficient condition ensure the existence and determination of a smooth radially unbounded polynomial CLF of the form
V
(
x
)
=
x
T
P
(
x
)
x
, while offering a benevolent choice for the gain matrix
P
(
x
)
, in the CLF. The direct relationship between the gain matrix
P
(
x
)
and state weighing matrix
Q
(
x
)
ensures optimization of an equivalent
s
(
x
)
=
x
T
Q
(
x
)
x
. This feature enables one to rightfully choose the gain matrix
P
(
x
)
as per the performance requisites of the system. Finally, the application of the proposed methodology for the speed control of a permanent magnet synchronous motor validates the efficacy and design flexibility of the methodology.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0142331218806338</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2019-06, Vol.41 (9), p.2637-2650 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2220720860 |
source | SAGE Complete A-Z List |
subjects | Feedback control Formulations Liapunov functions Linear control Nonlinear systems Optimal control Optimization Permanent magnets Polynomials Speed control Synchronous motors |
title | Inverse optimal control of a class of affine nonlinear systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20optimal%20control%20of%20a%20class%20of%20affine%20nonlinear%20systems&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Prasanna,%20Parvathy&rft.date=2019-06&rft.volume=41&rft.issue=9&rft.spage=2637&rft.epage=2650&rft.pages=2637-2650&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/0142331218806338&rft_dat=%3Cproquest_cross%3E2220720860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220720860&rft_id=info:pmid/&rft_sage_id=10.1177_0142331218806338&rfr_iscdi=true |