Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model
Summary Standard model‐based small area estimates perform poorly in presence of outliers. Sinha & Rao () developed robust frequentist predictors of small area means. In this article, we present a robust Bayesian method to handle outliers in unit‐level data by extending the nested error regressio...
Gespeichert in:
Veröffentlicht in: | International statistical review 2019-05, Vol.87 (S1), p.S158-S176 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S176 |
---|---|
container_issue | S1 |
container_start_page | S158 |
container_title | International statistical review |
container_volume | 87 |
creator | Chakraborty, Adrijo Datta, Gauri Sankar Mandal, Abhyuday |
description | Summary
Standard model‐based small area estimates perform poorly in presence of outliers. Sinha & Rao () developed robust frequentist predictors of small area means. In this article, we present a robust Bayesian method to handle outliers in unit‐level data by extending the nested error regression model. We consider a finite mixture of normal distributions for the unit‐level error to model outliers and produce noninformative Bayes predictors of small area means. Our modelling approach generalises that of Datta & Ghosh () under the normality assumption. Application of our method to a data set which is suspected to contain an outlier confirms this suspicion, correctly identifies the suspected outlier and produces robust predictors and posterior standard deviations of the small area means. Evaluation of several procedures including the M‐quantile method of Chambers & Tzavidis () via simulations shows that our proposed method is as good as other procedures in terms of bias, variability and coverage probability of confidence and credible intervals when there are no outliers. In the presence of outliers, while our method and Sinha–Rao method perform similarly, they improve over the other methods. This superior performance of our procedure shows its dual (Bayes and frequentist) dominance, which should make it attractive to all practitioners, Bayesians and frequentists, of small area estimation. |
doi_str_mv | 10.1111/insr.12283 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220577227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220577227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-9eb03e8291346c05e8469de0ddcd218cb13603d40c7e20f01a32eb73908f26de3</originalsourceid><addsrcrecordid>eNp9kM9LwzAUgIMoOKcX_4KAN6HzJWmb9jjHdIM5YdObENLk1XV0zUw6ZP-9nfXsuzx4fO_XR8gtgxHr4qFqgh8xzjNxRgZMJixKMi7OyQAEpJGUIr4kVyFsAUDwLB6Qj5UrDqGlswq99mZTGV3TR33EQNc7Xdd07FHTaWirnW4r19DSedpukC4xtGjp1PuusKga1J6u8NNjCCfsxVmsr8lFqeuAN395SN6fpm-TWbR4fZ5PxovICCFFlGMBAjOeMxGnBhLM4jS3CNYay1lmCiZSEDYGI5FDCUwLjoUUOWQlTy2KIbnr5-69-zp0h6mtO_imW6k455BIybnsqPueMt6F4LFUe9995Y-KgTrZUyd76tdeB7Me_q5qPP5Dqvlyvep7fgB1t3GG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220577227</pqid></control><display><type>article</type><title>Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model</title><source>Access via Wiley Online Library</source><creator>Chakraborty, Adrijo ; Datta, Gauri Sankar ; Mandal, Abhyuday</creator><creatorcontrib>Chakraborty, Adrijo ; Datta, Gauri Sankar ; Mandal, Abhyuday</creatorcontrib><description>Summary
Standard model‐based small area estimates perform poorly in presence of outliers. Sinha & Rao () developed robust frequentist predictors of small area means. In this article, we present a robust Bayesian method to handle outliers in unit‐level data by extending the nested error regression model. We consider a finite mixture of normal distributions for the unit‐level error to model outliers and produce noninformative Bayes predictors of small area means. Our modelling approach generalises that of Datta & Ghosh () under the normality assumption. Application of our method to a data set which is suspected to contain an outlier confirms this suspicion, correctly identifies the suspected outlier and produces robust predictors and posterior standard deviations of the small area means. Evaluation of several procedures including the M‐quantile method of Chambers & Tzavidis () via simulations shows that our proposed method is as good as other procedures in terms of bias, variability and coverage probability of confidence and credible intervals when there are no outliers. In the presence of outliers, while our method and Sinha–Rao method perform similarly, they improve over the other methods. This superior performance of our procedure shows its dual (Bayes and frequentist) dominance, which should make it attractive to all practitioners, Bayesians and frequentists, of small area estimation.</description><identifier>ISSN: 0306-7734</identifier><identifier>EISSN: 1751-5823</identifier><identifier>DOI: 10.1111/insr.12283</identifier><language>eng</language><publisher>Hoboken: John Wiley & Sons, Inc</publisher><subject>Bayesian analysis ; Computer simulation ; Economic models ; Errors ; Normal mixture ; Normality ; outliers ; Outliers (statistics) ; prediction intervals and uncertainty ; Regression models ; robust empirical best linear unbiased prediction ; Robustness (mathematics) ; Statistical analysis ; unit‐level models</subject><ispartof>International statistical review, 2019-05, Vol.87 (S1), p.S158-S176</ispartof><rights>2018 The Authors. International Statistical Review © 2018 International Statistical Institute</rights><rights>2019 International Statistical Institute</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-9eb03e8291346c05e8469de0ddcd218cb13603d40c7e20f01a32eb73908f26de3</citedby><cites>FETCH-LOGICAL-c3373-9eb03e8291346c05e8469de0ddcd218cb13603d40c7e20f01a32eb73908f26de3</cites><orcidid>0000-0002-6983-4877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Finsr.12283$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Finsr.12283$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chakraborty, Adrijo</creatorcontrib><creatorcontrib>Datta, Gauri Sankar</creatorcontrib><creatorcontrib>Mandal, Abhyuday</creatorcontrib><title>Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model</title><title>International statistical review</title><description>Summary
Standard model‐based small area estimates perform poorly in presence of outliers. Sinha & Rao () developed robust frequentist predictors of small area means. In this article, we present a robust Bayesian method to handle outliers in unit‐level data by extending the nested error regression model. We consider a finite mixture of normal distributions for the unit‐level error to model outliers and produce noninformative Bayes predictors of small area means. Our modelling approach generalises that of Datta & Ghosh () under the normality assumption. Application of our method to a data set which is suspected to contain an outlier confirms this suspicion, correctly identifies the suspected outlier and produces robust predictors and posterior standard deviations of the small area means. Evaluation of several procedures including the M‐quantile method of Chambers & Tzavidis () via simulations shows that our proposed method is as good as other procedures in terms of bias, variability and coverage probability of confidence and credible intervals when there are no outliers. In the presence of outliers, while our method and Sinha–Rao method perform similarly, they improve over the other methods. This superior performance of our procedure shows its dual (Bayes and frequentist) dominance, which should make it attractive to all practitioners, Bayesians and frequentists, of small area estimation.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Errors</subject><subject>Normal mixture</subject><subject>Normality</subject><subject>outliers</subject><subject>Outliers (statistics)</subject><subject>prediction intervals and uncertainty</subject><subject>Regression models</subject><subject>robust empirical best linear unbiased prediction</subject><subject>Robustness (mathematics)</subject><subject>Statistical analysis</subject><subject>unit‐level models</subject><issn>0306-7734</issn><issn>1751-5823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUgIMoOKcX_4KAN6HzJWmb9jjHdIM5YdObENLk1XV0zUw6ZP-9nfXsuzx4fO_XR8gtgxHr4qFqgh8xzjNxRgZMJixKMi7OyQAEpJGUIr4kVyFsAUDwLB6Qj5UrDqGlswq99mZTGV3TR33EQNc7Xdd07FHTaWirnW4r19DSedpukC4xtGjp1PuusKga1J6u8NNjCCfsxVmsr8lFqeuAN395SN6fpm-TWbR4fZ5PxovICCFFlGMBAjOeMxGnBhLM4jS3CNYay1lmCiZSEDYGI5FDCUwLjoUUOWQlTy2KIbnr5-69-zp0h6mtO_imW6k455BIybnsqPueMt6F4LFUe9995Y-KgTrZUyd76tdeB7Me_q5qPP5Dqvlyvep7fgB1t3GG</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Chakraborty, Adrijo</creator><creator>Datta, Gauri Sankar</creator><creator>Mandal, Abhyuday</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6983-4877</orcidid></search><sort><creationdate>201905</creationdate><title>Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model</title><author>Chakraborty, Adrijo ; Datta, Gauri Sankar ; Mandal, Abhyuday</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-9eb03e8291346c05e8469de0ddcd218cb13603d40c7e20f01a32eb73908f26de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Errors</topic><topic>Normal mixture</topic><topic>Normality</topic><topic>outliers</topic><topic>Outliers (statistics)</topic><topic>prediction intervals and uncertainty</topic><topic>Regression models</topic><topic>robust empirical best linear unbiased prediction</topic><topic>Robustness (mathematics)</topic><topic>Statistical analysis</topic><topic>unit‐level models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Adrijo</creatorcontrib><creatorcontrib>Datta, Gauri Sankar</creatorcontrib><creatorcontrib>Mandal, Abhyuday</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International statistical review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Adrijo</au><au>Datta, Gauri Sankar</au><au>Mandal, Abhyuday</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model</atitle><jtitle>International statistical review</jtitle><date>2019-05</date><risdate>2019</risdate><volume>87</volume><issue>S1</issue><spage>S158</spage><epage>S176</epage><pages>S158-S176</pages><issn>0306-7734</issn><eissn>1751-5823</eissn><abstract>Summary
Standard model‐based small area estimates perform poorly in presence of outliers. Sinha & Rao () developed robust frequentist predictors of small area means. In this article, we present a robust Bayesian method to handle outliers in unit‐level data by extending the nested error regression model. We consider a finite mixture of normal distributions for the unit‐level error to model outliers and produce noninformative Bayes predictors of small area means. Our modelling approach generalises that of Datta & Ghosh () under the normality assumption. Application of our method to a data set which is suspected to contain an outlier confirms this suspicion, correctly identifies the suspected outlier and produces robust predictors and posterior standard deviations of the small area means. Evaluation of several procedures including the M‐quantile method of Chambers & Tzavidis () via simulations shows that our proposed method is as good as other procedures in terms of bias, variability and coverage probability of confidence and credible intervals when there are no outliers. In the presence of outliers, while our method and Sinha–Rao method perform similarly, they improve over the other methods. This superior performance of our procedure shows its dual (Bayes and frequentist) dominance, which should make it attractive to all practitioners, Bayesians and frequentists, of small area estimation.</abstract><cop>Hoboken</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/insr.12283</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6983-4877</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-7734 |
ispartof | International statistical review, 2019-05, Vol.87 (S1), p.S158-S176 |
issn | 0306-7734 1751-5823 |
language | eng |
recordid | cdi_proquest_journals_2220577227 |
source | Access via Wiley Online Library |
subjects | Bayesian analysis Computer simulation Economic models Errors Normal mixture Normality outliers Outliers (statistics) prediction intervals and uncertainty Regression models robust empirical best linear unbiased prediction Robustness (mathematics) Statistical analysis unit‐level models |
title | Robust Hierarchical Bayes Small Area Estimation for the Nested Error Linear Regression Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Hierarchical%20Bayes%20Small%20Area%20Estimation%20for%20the%20Nested%20Error%20Linear%20Regression%20Model&rft.jtitle=International%20statistical%20review&rft.au=Chakraborty,%20Adrijo&rft.date=2019-05&rft.volume=87&rft.issue=S1&rft.spage=S158&rft.epage=S176&rft.pages=S158-S176&rft.issn=0306-7734&rft.eissn=1751-5823&rft_id=info:doi/10.1111/insr.12283&rft_dat=%3Cproquest_cross%3E2220577227%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220577227&rft_id=info:pmid/&rfr_iscdi=true |