Periodic autoregressive models with closed skew-normal innovations

This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Baye...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2019-09, Vol.34 (3), p.1183-1213
Hauptverfasser: Manouchehri, T., Nematollahi, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 3
container_start_page 1183
container_title Computational statistics
container_volume 34
creator Manouchehri, T.
Nematollahi, A. R.
description This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.
doi_str_mv 10.1007/s00180-019-00893-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220518590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220518590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyRmA3XduzYI1T8SZVggNly45uSksbFTlrRpycQJDamu5zzXekQcs7gkgEUVwmAaaDADAXQRtD9AZkwxQQ1SupDMgGTC5qD4sfkJKUVAOcFZxNy84yxDr4uM9d3IeIyYkr1FrN18NikbFd3b1nZhIQ-S--4o22Ia9dkdduGrevq0KZTclS5JuHZ752S17vbl9kDnT_dP86u57QUzHSUAwivjZOeecWNxnwBhWK55wvMpeMlR8VQywKgKrxeCK2cy6WvqrISrCrFlFyMu5sYPnpMnV2FPrbDS8s5B8m0NDBQfKTKGFKKWNlNrNcufloG9ruVHVvZoZX9aWX3gyRGKQ1wu8T4N_2P9QVHSW2X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220518590</pqid></control><display><type>article</type><title>Periodic autoregressive models with closed skew-normal innovations</title><source>SpringerLink Journals</source><creator>Manouchehri, T. ; Nematollahi, A. R.</creator><creatorcontrib>Manouchehri, T. ; Nematollahi, A. R.</creatorcontrib><description>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-019-00893-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Asymptotic methods ; Asymptotic properties ; Autoregressive models ; Bayesian analysis ; Computer simulation ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Estimators ; Innovations ; Mathematics and Statistics ; Model accuracy ; Normal distribution ; Original Paper ; Parameter estimation ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Computational statistics, 2019-09, Vol.34 (3), p.1183-1213</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</citedby><cites>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</cites><orcidid>0000-0002-2623-7159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-019-00893-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-019-00893-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Manouchehri, T.</creatorcontrib><creatorcontrib>Nematollahi, A. R.</creatorcontrib><title>Periodic autoregressive models with closed skew-normal innovations</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Estimators</subject><subject>Innovations</subject><subject>Mathematics and Statistics</subject><subject>Model accuracy</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAkyRmA3XduzYI1T8SZVggNly45uSksbFTlrRpycQJDamu5zzXekQcs7gkgEUVwmAaaDADAXQRtD9AZkwxQQ1SupDMgGTC5qD4sfkJKUVAOcFZxNy84yxDr4uM9d3IeIyYkr1FrN18NikbFd3b1nZhIQ-S--4o22Ia9dkdduGrevq0KZTclS5JuHZ752S17vbl9kDnT_dP86u57QUzHSUAwivjZOeecWNxnwBhWK55wvMpeMlR8VQywKgKrxeCK2cy6WvqrISrCrFlFyMu5sYPnpMnV2FPrbDS8s5B8m0NDBQfKTKGFKKWNlNrNcufloG9ruVHVvZoZX9aWX3gyRGKQ1wu8T4N_2P9QVHSW2X</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Manouchehri, T.</creator><creator>Nematollahi, A. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2623-7159</orcidid></search><sort><creationdate>20190901</creationdate><title>Periodic autoregressive models with closed skew-normal innovations</title><author>Manouchehri, T. ; Nematollahi, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Estimators</topic><topic>Innovations</topic><topic>Mathematics and Statistics</topic><topic>Model accuracy</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manouchehri, T.</creatorcontrib><creatorcontrib>Nematollahi, A. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manouchehri, T.</au><au>Nematollahi, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic autoregressive models with closed skew-normal innovations</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1183</spage><epage>1213</epage><pages>1183-1213</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-019-00893-z</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2623-7159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0943-4062
ispartof Computational statistics, 2019-09, Vol.34 (3), p.1183-1213
issn 0943-4062
1613-9658
language eng
recordid cdi_proquest_journals_2220518590
source SpringerLink Journals
subjects Algorithms
Asymptotic methods
Asymptotic properties
Autoregressive models
Bayesian analysis
Computer simulation
Economic models
Economic Theory/Quantitative Economics/Mathematical Methods
Estimators
Innovations
Mathematics and Statistics
Model accuracy
Normal distribution
Original Paper
Parameter estimation
Probability and Statistics in Computer Science
Probability Theory and Stochastic Processes
Statistics
title Periodic autoregressive models with closed skew-normal innovations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20autoregressive%20models%20with%20closed%20skew-normal%20innovations&rft.jtitle=Computational%20statistics&rft.au=Manouchehri,%20T.&rft.date=2019-09-01&rft.volume=34&rft.issue=3&rft.spage=1183&rft.epage=1213&rft.pages=1183-1213&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-019-00893-z&rft_dat=%3Cproquest_cross%3E2220518590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220518590&rft_id=info:pmid/&rfr_iscdi=true