Periodic autoregressive models with closed skew-normal innovations
This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Baye...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2019-09, Vol.34 (3), p.1183-1213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1213 |
---|---|
container_issue | 3 |
container_start_page | 1183 |
container_title | Computational statistics |
container_volume | 34 |
creator | Manouchehri, T. Nematollahi, A. R. |
description | This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion. |
doi_str_mv | 10.1007/s00180-019-00893-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220518590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220518590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyRmA3XduzYI1T8SZVggNly45uSksbFTlrRpycQJDamu5zzXekQcs7gkgEUVwmAaaDADAXQRtD9AZkwxQQ1SupDMgGTC5qD4sfkJKUVAOcFZxNy84yxDr4uM9d3IeIyYkr1FrN18NikbFd3b1nZhIQ-S--4o22Ia9dkdduGrevq0KZTclS5JuHZ752S17vbl9kDnT_dP86u57QUzHSUAwivjZOeecWNxnwBhWK55wvMpeMlR8VQywKgKrxeCK2cy6WvqrISrCrFlFyMu5sYPnpMnV2FPrbDS8s5B8m0NDBQfKTKGFKKWNlNrNcufloG9ruVHVvZoZX9aWX3gyRGKQ1wu8T4N_2P9QVHSW2X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220518590</pqid></control><display><type>article</type><title>Periodic autoregressive models with closed skew-normal innovations</title><source>SpringerLink Journals</source><creator>Manouchehri, T. ; Nematollahi, A. R.</creator><creatorcontrib>Manouchehri, T. ; Nematollahi, A. R.</creatorcontrib><description>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-019-00893-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Asymptotic methods ; Asymptotic properties ; Autoregressive models ; Bayesian analysis ; Computer simulation ; Economic models ; Economic Theory/Quantitative Economics/Mathematical Methods ; Estimators ; Innovations ; Mathematics and Statistics ; Model accuracy ; Normal distribution ; Original Paper ; Parameter estimation ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics</subject><ispartof>Computational statistics, 2019-09, Vol.34 (3), p.1183-1213</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Computational Statistics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</citedby><cites>FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</cites><orcidid>0000-0002-2623-7159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-019-00893-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-019-00893-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Manouchehri, T.</creatorcontrib><creatorcontrib>Nematollahi, A. R.</creatorcontrib><title>Periodic autoregressive models with closed skew-normal innovations</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Autoregressive models</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Economic models</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Estimators</subject><subject>Innovations</subject><subject>Mathematics and Statistics</subject><subject>Model accuracy</subject><subject>Normal distribution</subject><subject>Original Paper</subject><subject>Parameter estimation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kL1OwzAURi0EEqXwAkyRmA3XduzYI1T8SZVggNly45uSksbFTlrRpycQJDamu5zzXekQcs7gkgEUVwmAaaDADAXQRtD9AZkwxQQ1SupDMgGTC5qD4sfkJKUVAOcFZxNy84yxDr4uM9d3IeIyYkr1FrN18NikbFd3b1nZhIQ-S--4o22Ia9dkdduGrevq0KZTclS5JuHZ752S17vbl9kDnT_dP86u57QUzHSUAwivjZOeecWNxnwBhWK55wvMpeMlR8VQywKgKrxeCK2cy6WvqrISrCrFlFyMu5sYPnpMnV2FPrbDS8s5B8m0NDBQfKTKGFKKWNlNrNcufloG9ruVHVvZoZX9aWX3gyRGKQ1wu8T4N_2P9QVHSW2X</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Manouchehri, T.</creator><creator>Nematollahi, A. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2623-7159</orcidid></search><sort><creationdate>20190901</creationdate><title>Periodic autoregressive models with closed skew-normal innovations</title><author>Manouchehri, T. ; Nematollahi, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2003d89a5d1d6298e4b07614d2be45a2c2e61e85700f7d8b386aa45dffcf31fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Autoregressive models</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Economic models</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Estimators</topic><topic>Innovations</topic><topic>Mathematics and Statistics</topic><topic>Model accuracy</topic><topic>Normal distribution</topic><topic>Original Paper</topic><topic>Parameter estimation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manouchehri, T.</creatorcontrib><creatorcontrib>Nematollahi, A. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manouchehri, T.</au><au>Nematollahi, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic autoregressive models with closed skew-normal innovations</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1183</spage><epage>1213</epage><pages>1183-1213</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>This paper is concerned with the estimation problem of a periodic autoregressive model with closed skew-normal innovations. The closed skew-normal (CSN) distribution has some useful properties similar to those of the Gaussian distribution. Maximum likelihood (ML), Maximum a posteriori (MAP) and Bayesian approaches are proposed and compared in order to estimate the model parameters. For the Bayesian approach, the Gibbs sampling algorithm and for computing the ML and MAP estimations, the expectation–maximization algorithms are performed. The simulation studies are then conducted to compare the frequentist average losses of competing estimators and to study the asymptotic properties of the given estimators. The proposed model and methods developed in this paper are also applied to a real time series. The accuracy of the CSN and Gaussian models is compared by cross validation criterion.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00180-019-00893-z</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2623-7159</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4062 |
ispartof | Computational statistics, 2019-09, Vol.34 (3), p.1183-1213 |
issn | 0943-4062 1613-9658 |
language | eng |
recordid | cdi_proquest_journals_2220518590 |
source | SpringerLink Journals |
subjects | Algorithms Asymptotic methods Asymptotic properties Autoregressive models Bayesian analysis Computer simulation Economic models Economic Theory/Quantitative Economics/Mathematical Methods Estimators Innovations Mathematics and Statistics Model accuracy Normal distribution Original Paper Parameter estimation Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics |
title | Periodic autoregressive models with closed skew-normal innovations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20autoregressive%20models%20with%20closed%20skew-normal%20innovations&rft.jtitle=Computational%20statistics&rft.au=Manouchehri,%20T.&rft.date=2019-09-01&rft.volume=34&rft.issue=3&rft.spage=1183&rft.epage=1213&rft.pages=1183-1213&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-019-00893-z&rft_dat=%3Cproquest_cross%3E2220518590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220518590&rft_id=info:pmid/&rfr_iscdi=true |