Joint Online RUL Prediction for Multivariate Deteriorating Systems

Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2019-05, Vol.15 (5), p.2870-2878
Hauptverfasser: Peng, Weiwen, Ye, Zhi-Sheng, Chen, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2878
container_issue 5
container_start_page 2870
container_title IEEE transactions on industrial informatics
container_volume 15
creator Peng, Weiwen
Ye, Zhi-Sheng
Chen, Nan
description Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.
doi_str_mv 10.1109/TII.2018.2869429
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2220398753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8458202</ieee_id><sourcerecordid>2220398753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJVzc5av2qVCrankN2d1ZS2t2aZIX-e7e0eJqBed4Z5iHkmsGIMTB3i-l0xIHpEddjI7k5IQNmJMsAFJz2vVIsExzEObmIcQUgchBmQB7eWt8kOm_WvkH6uZzRj4CVL5NvG1q3gb536-R_XfAuIX3EhMG3wSXffNOvXUy4iZfkrHbriFfHOiTL56fF5DWbzV-mk_tZVnLDUpZXSjlmHONCjYWqpdaYAzMGJdMly3Uui0LWSroSVCWKgpeyrCojlJPYD8SQ3B72bkP702FMdtV2oelPWs77z4zOlegpOFBlaGMMWNtt8BsXdpaB3ZuyvSm7N2WPpvrIzSHiEfEf11JpDlz8AWQ2Y5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220398753</pqid></control><display><type>article</type><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</creator><creatorcontrib>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</creatorcontrib><description>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2869429</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Degradation ; Degradation modeling ; Filtration ; Informatics ; Mathematical models ; Measurement errors ; Numerical models ; online inference ; Parameter estimation ; Parameter identification ; particle filter ; Predictive models ; Prognostics and health management ; prognostics and health management (PHM) ; remaining useful life (RUL) ; Stochastic processes</subject><ispartof>IEEE transactions on industrial informatics, 2019-05, Vol.15 (5), p.2870-2878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</citedby><cites>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</cites><orcidid>0000-0001-9535-9187 ; 0000-0001-5731-3911 ; 0000-0003-2495-5234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8458202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8458202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Weiwen</creatorcontrib><creatorcontrib>Ye, Zhi-Sheng</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</description><subject>Degradation</subject><subject>Degradation modeling</subject><subject>Filtration</subject><subject>Informatics</subject><subject>Mathematical models</subject><subject>Measurement errors</subject><subject>Numerical models</subject><subject>online inference</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>particle filter</subject><subject>Predictive models</subject><subject>Prognostics and health management</subject><subject>prognostics and health management (PHM)</subject><subject>remaining useful life (RUL)</subject><subject>Stochastic processes</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJVzc5av2qVCrankN2d1ZS2t2aZIX-e7e0eJqBed4Z5iHkmsGIMTB3i-l0xIHpEddjI7k5IQNmJMsAFJz2vVIsExzEObmIcQUgchBmQB7eWt8kOm_WvkH6uZzRj4CVL5NvG1q3gb536-R_XfAuIX3EhMG3wSXffNOvXUy4iZfkrHbriFfHOiTL56fF5DWbzV-mk_tZVnLDUpZXSjlmHONCjYWqpdaYAzMGJdMly3Uui0LWSroSVCWKgpeyrCojlJPYD8SQ3B72bkP702FMdtV2oelPWs77z4zOlegpOFBlaGMMWNtt8BsXdpaB3ZuyvSm7N2WPpvrIzSHiEfEf11JpDlz8AWQ2Y5I</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Peng, Weiwen</creator><creator>Ye, Zhi-Sheng</creator><creator>Chen, Nan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9535-9187</orcidid><orcidid>https://orcid.org/0000-0001-5731-3911</orcidid><orcidid>https://orcid.org/0000-0003-2495-5234</orcidid></search><sort><creationdate>20190501</creationdate><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><author>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Degradation</topic><topic>Degradation modeling</topic><topic>Filtration</topic><topic>Informatics</topic><topic>Mathematical models</topic><topic>Measurement errors</topic><topic>Numerical models</topic><topic>online inference</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>particle filter</topic><topic>Predictive models</topic><topic>Prognostics and health management</topic><topic>prognostics and health management (PHM)</topic><topic>remaining useful life (RUL)</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Weiwen</creatorcontrib><creatorcontrib>Ye, Zhi-Sheng</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Weiwen</au><au>Ye, Zhi-Sheng</au><au>Chen, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Online RUL Prediction for Multivariate Deteriorating Systems</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>2870</spage><epage>2878</epage><pages>2870-2878</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2869429</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9535-9187</orcidid><orcidid>https://orcid.org/0000-0001-5731-3911</orcidid><orcidid>https://orcid.org/0000-0003-2495-5234</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2019-05, Vol.15 (5), p.2870-2878
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_journals_2220398753
source IEEE Electronic Library (IEL)
subjects Degradation
Degradation modeling
Filtration
Informatics
Mathematical models
Measurement errors
Numerical models
online inference
Parameter estimation
Parameter identification
particle filter
Predictive models
Prognostics and health management
prognostics and health management (PHM)
remaining useful life (RUL)
Stochastic processes
title Joint Online RUL Prediction for Multivariate Deteriorating Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Online%20RUL%20Prediction%20for%20Multivariate%20Deteriorating%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Peng,%20Weiwen&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=2870&rft.epage=2878&rft.pages=2870-2878&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2869429&rft_dat=%3Cproquest_RIE%3E2220398753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220398753&rft_id=info:pmid/&rft_ieee_id=8458202&rfr_iscdi=true