Joint Online RUL Prediction for Multivariate Deteriorating Systems
Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2019-05, Vol.15 (5), p.2870-2878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2878 |
---|---|
container_issue | 5 |
container_start_page | 2870 |
container_title | IEEE transactions on industrial informatics |
container_volume | 15 |
creator | Peng, Weiwen Ye, Zhi-Sheng Chen, Nan |
description | Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference. |
doi_str_mv | 10.1109/TII.2018.2869429 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2220398753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8458202</ieee_id><sourcerecordid>2220398753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJVzc5av2qVCrankN2d1ZS2t2aZIX-e7e0eJqBed4Z5iHkmsGIMTB3i-l0xIHpEddjI7k5IQNmJMsAFJz2vVIsExzEObmIcQUgchBmQB7eWt8kOm_WvkH6uZzRj4CVL5NvG1q3gb536-R_XfAuIX3EhMG3wSXffNOvXUy4iZfkrHbriFfHOiTL56fF5DWbzV-mk_tZVnLDUpZXSjlmHONCjYWqpdaYAzMGJdMly3Uui0LWSroSVCWKgpeyrCojlJPYD8SQ3B72bkP702FMdtV2oelPWs77z4zOlegpOFBlaGMMWNtt8BsXdpaB3ZuyvSm7N2WPpvrIzSHiEfEf11JpDlz8AWQ2Y5I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220398753</pqid></control><display><type>article</type><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</creator><creatorcontrib>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</creatorcontrib><description>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2018.2869429</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Degradation ; Degradation modeling ; Filtration ; Informatics ; Mathematical models ; Measurement errors ; Numerical models ; online inference ; Parameter estimation ; Parameter identification ; particle filter ; Predictive models ; Prognostics and health management ; prognostics and health management (PHM) ; remaining useful life (RUL) ; Stochastic processes</subject><ispartof>IEEE transactions on industrial informatics, 2019-05, Vol.15 (5), p.2870-2878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</citedby><cites>FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</cites><orcidid>0000-0001-9535-9187 ; 0000-0001-5731-3911 ; 0000-0003-2495-5234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8458202$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8458202$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Peng, Weiwen</creatorcontrib><creatorcontrib>Ye, Zhi-Sheng</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</description><subject>Degradation</subject><subject>Degradation modeling</subject><subject>Filtration</subject><subject>Informatics</subject><subject>Mathematical models</subject><subject>Measurement errors</subject><subject>Numerical models</subject><subject>online inference</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>particle filter</subject><subject>Predictive models</subject><subject>Prognostics and health management</subject><subject>prognostics and health management (PHM)</subject><subject>remaining useful life (RUL)</subject><subject>Stochastic processes</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89bJVzc5av2qVCrankN2d1ZS2t2aZIX-e7e0eJqBed4Z5iHkmsGIMTB3i-l0xIHpEddjI7k5IQNmJMsAFJz2vVIsExzEObmIcQUgchBmQB7eWt8kOm_WvkH6uZzRj4CVL5NvG1q3gb536-R_XfAuIX3EhMG3wSXffNOvXUy4iZfkrHbriFfHOiTL56fF5DWbzV-mk_tZVnLDUpZXSjlmHONCjYWqpdaYAzMGJdMly3Uui0LWSroSVCWKgpeyrCojlJPYD8SQ3B72bkP702FMdtV2oelPWs77z4zOlegpOFBlaGMMWNtt8BsXdpaB3ZuyvSm7N2WPpvrIzSHiEfEf11JpDlz8AWQ2Y5I</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Peng, Weiwen</creator><creator>Ye, Zhi-Sheng</creator><creator>Chen, Nan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9535-9187</orcidid><orcidid>https://orcid.org/0000-0001-5731-3911</orcidid><orcidid>https://orcid.org/0000-0003-2495-5234</orcidid></search><sort><creationdate>20190501</creationdate><title>Joint Online RUL Prediction for Multivariate Deteriorating Systems</title><author>Peng, Weiwen ; Ye, Zhi-Sheng ; Chen, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-7d55a19a1235635f488e70199e418c17874bb4f54ac05d3bb2c4cdd935a4eb4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Degradation</topic><topic>Degradation modeling</topic><topic>Filtration</topic><topic>Informatics</topic><topic>Mathematical models</topic><topic>Measurement errors</topic><topic>Numerical models</topic><topic>online inference</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>particle filter</topic><topic>Predictive models</topic><topic>Prognostics and health management</topic><topic>prognostics and health management (PHM)</topic><topic>remaining useful life (RUL)</topic><topic>Stochastic processes</topic><toplevel>online_resources</toplevel><creatorcontrib>Peng, Weiwen</creatorcontrib><creatorcontrib>Ye, Zhi-Sheng</creatorcontrib><creatorcontrib>Chen, Nan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Peng, Weiwen</au><au>Ye, Zhi-Sheng</au><au>Chen, Nan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Online RUL Prediction for Multivariate Deteriorating Systems</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>15</volume><issue>5</issue><spage>2870</spage><epage>2878</epage><pages>2870-2878</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Stochastic processes and filtering methods are popular tools for degradation modeling and online remaining useful life (RUL) prediction. However, most models are for one-dimensional degradation and various filtering methods can only handle observations from a single system. This paper studies joint online RUL prediction of multideteriorating systems with multisystem observations and measurement errors. A multivariate degradation model equipped with a batch particle filter is developed and built for characterizing multiple dependent performance deteriorations with measurement errors in each system. The batch particle filter is developed for simultaneous online parameter estimation and degradation state identification by leveraging multisystem observations. A numerical example and a case study are provided to demonstrate the proposed method. The results show that homogeneous multisystem observations from a population of multideteriorating systems can be jointly processed on-the-fly. Individualized online RUL prediction with improved precision for each system can be achieved through the joint online inference.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2018.2869429</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9535-9187</orcidid><orcidid>https://orcid.org/0000-0001-5731-3911</orcidid><orcidid>https://orcid.org/0000-0003-2495-5234</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2019-05, Vol.15 (5), p.2870-2878 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_journals_2220398753 |
source | IEEE Electronic Library (IEL) |
subjects | Degradation Degradation modeling Filtration Informatics Mathematical models Measurement errors Numerical models online inference Parameter estimation Parameter identification particle filter Predictive models Prognostics and health management prognostics and health management (PHM) remaining useful life (RUL) Stochastic processes |
title | Joint Online RUL Prediction for Multivariate Deteriorating Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A52%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Online%20RUL%20Prediction%20for%20Multivariate%20Deteriorating%20Systems&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Peng,%20Weiwen&rft.date=2019-05-01&rft.volume=15&rft.issue=5&rft.spage=2870&rft.epage=2878&rft.pages=2870-2878&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2018.2869429&rft_dat=%3Cproquest_RIE%3E2220398753%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220398753&rft_id=info:pmid/&rft_ieee_id=8458202&rfr_iscdi=true |