Coupled Patch Alignment for Matching Cross-View Gaits
Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a couple...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2019-06, Vol.28 (6), p.3142-3157 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3157 |
---|---|
container_issue | 6 |
container_start_page | 3142 |
container_title | IEEE transactions on image processing |
container_volume | 28 |
creator | Ben, Xianye Gong, Chen Zhang, Peng Jia, Xitong Wu, Qiang Meng, Weixiao |
description | Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition. |
doi_str_mv | 10.1109/TIP.2019.2894362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2220394365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624554</ieee_id><sourcerecordid>2220394365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRrFbvgiABL15SZ9_ZYwlaCxV7qF6X7e6mpuRRswnivzehtQdPM8x8M8x8CN1gmGAM6nE1X04IYDUhiWJUkBN0gRXDMQAjp30OXMYSMzVClyFsATDjWJyjEQUhheLqAvG07naFd9HStPYzmhb5pip91UZZ3USvQy2vNlHa1CHEH7n_jmYmb8MVOstMEfz1IY7R-_PTKn2JF2-zeTpdxJZh2saEYSIAjJROAfFrYZ2znEpHnXBrCQnNLGeZAZMIQY0VhChsk8xgTxzxjo7Rw37vrqm_Oh9aXebB-qIwla-7oAmWigngCe7R-3_otu6aqr9OE0KADn54T8GessNHjc_0rslL0_xoDHpQqnulelCqD0r7kbvD4m5dencc-HPYA7d7IPfeH9uJIIxzRn8BSMt34w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220394365</pqid></control><display><type>article</type><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><source>IEEE Electronic Library (IEL)</source><creator>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</creator><creatorcontrib>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</creatorcontrib><description>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2894362</identifier><identifier>PMID: 30676959</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Alignment ; Cameras ; Correlation analysis ; Coupled patch alignment ; cross-view gait ; Feature extraction ; Gait recognition ; multi-dimensional patch alignment ; Optimization ; Probes ; Three-dimensional displays</subject><ispartof>IEEE transactions on image processing, 2019-06, Vol.28 (6), p.3142-3157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</citedby><cites>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</cites><orcidid>0000-0001-8083-3501 ; 0000-0002-4092-9856 ; 0000-0001-6794-7352 ; 0000-0002-0215-9563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30676959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben, Xianye</creatorcontrib><creatorcontrib>Gong, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Jia, Xitong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Cameras</subject><subject>Correlation analysis</subject><subject>Coupled patch alignment</subject><subject>cross-view gait</subject><subject>Feature extraction</subject><subject>Gait recognition</subject><subject>multi-dimensional patch alignment</subject><subject>Optimization</subject><subject>Probes</subject><subject>Three-dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRrFbvgiABL15SZ9_ZYwlaCxV7qF6X7e6mpuRRswnivzehtQdPM8x8M8x8CN1gmGAM6nE1X04IYDUhiWJUkBN0gRXDMQAjp30OXMYSMzVClyFsATDjWJyjEQUhheLqAvG07naFd9HStPYzmhb5pip91UZZ3USvQy2vNlHa1CHEH7n_jmYmb8MVOstMEfz1IY7R-_PTKn2JF2-zeTpdxJZh2saEYSIAjJROAfFrYZ2znEpHnXBrCQnNLGeZAZMIQY0VhChsk8xgTxzxjo7Rw37vrqm_Oh9aXebB-qIwla-7oAmWigngCe7R-3_otu6aqr9OE0KADn54T8GessNHjc_0rslL0_xoDHpQqnulelCqD0r7kbvD4m5dencc-HPYA7d7IPfeH9uJIIxzRn8BSMt34w</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ben, Xianye</creator><creator>Gong, Chen</creator><creator>Zhang, Peng</creator><creator>Jia, Xitong</creator><creator>Wu, Qiang</creator><creator>Meng, Weixiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8083-3501</orcidid><orcidid>https://orcid.org/0000-0002-4092-9856</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0002-0215-9563</orcidid></search><sort><creationdate>20190601</creationdate><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><author>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Cameras</topic><topic>Correlation analysis</topic><topic>Coupled patch alignment</topic><topic>cross-view gait</topic><topic>Feature extraction</topic><topic>Gait recognition</topic><topic>multi-dimensional patch alignment</topic><topic>Optimization</topic><topic>Probes</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben, Xianye</creatorcontrib><creatorcontrib>Gong, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Jia, Xitong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben, Xianye</au><au>Gong, Chen</au><au>Zhang, Peng</au><au>Jia, Xitong</au><au>Wu, Qiang</au><au>Meng, Weixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Patch Alignment for Matching Cross-View Gaits</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>28</volume><issue>6</issue><spage>3142</spage><epage>3157</epage><pages>3142-3157</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30676959</pmid><doi>10.1109/TIP.2019.2894362</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8083-3501</orcidid><orcidid>https://orcid.org/0000-0002-4092-9856</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0002-0215-9563</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2019-06, Vol.28 (6), p.3142-3157 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_proquest_journals_2220394365 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Alignment Cameras Correlation analysis Coupled patch alignment cross-view gait Feature extraction Gait recognition multi-dimensional patch alignment Optimization Probes Three-dimensional displays |
title | Coupled Patch Alignment for Matching Cross-View Gaits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Patch%20Alignment%20for%20Matching%20Cross-View%20Gaits&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ben,%20Xianye&rft.date=2019-06-01&rft.volume=28&rft.issue=6&rft.spage=3142&rft.epage=3157&rft.pages=3142-3157&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2894362&rft_dat=%3Cproquest_RIE%3E2220394365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220394365&rft_id=info:pmid/30676959&rft_ieee_id=8624554&rfr_iscdi=true |