Coupled Patch Alignment for Matching Cross-View Gaits

Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2019-06, Vol.28 (6), p.3142-3157
Hauptverfasser: Ben, Xianye, Gong, Chen, Zhang, Peng, Jia, Xitong, Wu, Qiang, Meng, Weixiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3157
container_issue 6
container_start_page 3142
container_title IEEE transactions on image processing
container_volume 28
creator Ben, Xianye
Gong, Chen
Zhang, Peng
Jia, Xitong
Wu, Qiang
Meng, Weixiao
description Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.
doi_str_mv 10.1109/TIP.2019.2894362
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2220394365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8624554</ieee_id><sourcerecordid>2220394365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</originalsourceid><addsrcrecordid>eNpdkEtLw0AQgBdRrFbvgiABL15SZ9_ZYwlaCxV7qF6X7e6mpuRRswnivzehtQdPM8x8M8x8CN1gmGAM6nE1X04IYDUhiWJUkBN0gRXDMQAjp30OXMYSMzVClyFsATDjWJyjEQUhheLqAvG07naFd9HStPYzmhb5pip91UZZ3USvQy2vNlHa1CHEH7n_jmYmb8MVOstMEfz1IY7R-_PTKn2JF2-zeTpdxJZh2saEYSIAjJROAfFrYZ2znEpHnXBrCQnNLGeZAZMIQY0VhChsk8xgTxzxjo7Rw37vrqm_Oh9aXebB-qIwla-7oAmWigngCe7R-3_otu6aqr9OE0KADn54T8GessNHjc_0rslL0_xoDHpQqnulelCqD0r7kbvD4m5dencc-HPYA7d7IPfeH9uJIIxzRn8BSMt34w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220394365</pqid></control><display><type>article</type><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><source>IEEE Electronic Library (IEL)</source><creator>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</creator><creatorcontrib>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</creatorcontrib><description>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2019.2894362</identifier><identifier>PMID: 30676959</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Alignment ; Cameras ; Correlation analysis ; Coupled patch alignment ; cross-view gait ; Feature extraction ; Gait recognition ; multi-dimensional patch alignment ; Optimization ; Probes ; Three-dimensional displays</subject><ispartof>IEEE transactions on image processing, 2019-06, Vol.28 (6), p.3142-3157</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</citedby><cites>FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</cites><orcidid>0000-0001-8083-3501 ; 0000-0002-4092-9856 ; 0000-0001-6794-7352 ; 0000-0002-0215-9563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8624554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8624554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30676959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben, Xianye</creatorcontrib><creatorcontrib>Gong, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Jia, Xitong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</description><subject>Algorithms</subject><subject>Alignment</subject><subject>Cameras</subject><subject>Correlation analysis</subject><subject>Coupled patch alignment</subject><subject>cross-view gait</subject><subject>Feature extraction</subject><subject>Gait recognition</subject><subject>multi-dimensional patch alignment</subject><subject>Optimization</subject><subject>Probes</subject><subject>Three-dimensional displays</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtLw0AQgBdRrFbvgiABL15SZ9_ZYwlaCxV7qF6X7e6mpuRRswnivzehtQdPM8x8M8x8CN1gmGAM6nE1X04IYDUhiWJUkBN0gRXDMQAjp30OXMYSMzVClyFsATDjWJyjEQUhheLqAvG07naFd9HStPYzmhb5pip91UZZ3USvQy2vNlHa1CHEH7n_jmYmb8MVOstMEfz1IY7R-_PTKn2JF2-zeTpdxJZh2saEYSIAjJROAfFrYZ2znEpHnXBrCQnNLGeZAZMIQY0VhChsk8xgTxzxjo7Rw37vrqm_Oh9aXebB-qIwla-7oAmWigngCe7R-3_otu6aqr9OE0KADn54T8GessNHjc_0rslL0_xoDHpQqnulelCqD0r7kbvD4m5dencc-HPYA7d7IPfeH9uJIIxzRn8BSMt34w</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ben, Xianye</creator><creator>Gong, Chen</creator><creator>Zhang, Peng</creator><creator>Jia, Xitong</creator><creator>Wu, Qiang</creator><creator>Meng, Weixiao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8083-3501</orcidid><orcidid>https://orcid.org/0000-0002-4092-9856</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0002-0215-9563</orcidid></search><sort><creationdate>20190601</creationdate><title>Coupled Patch Alignment for Matching Cross-View Gaits</title><author>Ben, Xianye ; Gong, Chen ; Zhang, Peng ; Jia, Xitong ; Wu, Qiang ; Meng, Weixiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-2412600a77d902eb6cddc537d3d6db7083fc54fa0a8663ac62291c8fa1e2d2ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Alignment</topic><topic>Cameras</topic><topic>Correlation analysis</topic><topic>Coupled patch alignment</topic><topic>cross-view gait</topic><topic>Feature extraction</topic><topic>Gait recognition</topic><topic>multi-dimensional patch alignment</topic><topic>Optimization</topic><topic>Probes</topic><topic>Three-dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben, Xianye</creatorcontrib><creatorcontrib>Gong, Chen</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Jia, Xitong</creatorcontrib><creatorcontrib>Wu, Qiang</creatorcontrib><creatorcontrib>Meng, Weixiao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ben, Xianye</au><au>Gong, Chen</au><au>Zhang, Peng</au><au>Jia, Xitong</au><au>Wu, Qiang</au><au>Meng, Weixiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupled Patch Alignment for Matching Cross-View Gaits</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>28</volume><issue>6</issue><spage>3142</spage><epage>3157</epage><pages>3142-3157</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Gait recognition has attracted growing attention in recent years, as the gait of humans has a strong discriminative ability even under low resolution at a distance. Unfortunately, the performance of gait recognition can be largely affected by view change. To address this problem, we propose a coupled patch alignment (CPA) algorithm that effectively matches a pair of gaits across different views. To realize CPA, we first build a certain amount of patches, and each of them is made up of a sample as well as its intra-class and inter-class nearest neighbors. Then, we design an objective function for each patch to balance the cross-view intra-class compactness and the cross-view inter-class separability. Finally, all the local-independent patches are combined to render a unified objective function. Theoretically, we show that the proposed CPA has a close relationship with canonical correlation analysis. Algorithmically, we extend CPA to "multi-dimensional patch alignment" that can handle an arbitrary number of views. Comprehensive experiments on CASIA(B), USF, and OU-ISIR gait databases firmly demonstrate the effectiveness of our methods over other existing popular methods in terms of cross-view gait recognition.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30676959</pmid><doi>10.1109/TIP.2019.2894362</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8083-3501</orcidid><orcidid>https://orcid.org/0000-0002-4092-9856</orcidid><orcidid>https://orcid.org/0000-0001-6794-7352</orcidid><orcidid>https://orcid.org/0000-0002-0215-9563</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2019-06, Vol.28 (6), p.3142-3157
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2220394365
source IEEE Electronic Library (IEL)
subjects Algorithms
Alignment
Cameras
Correlation analysis
Coupled patch alignment
cross-view gait
Feature extraction
Gait recognition
multi-dimensional patch alignment
Optimization
Probes
Three-dimensional displays
title Coupled Patch Alignment for Matching Cross-View Gaits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupled%20Patch%20Alignment%20for%20Matching%20Cross-View%20Gaits&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Ben,%20Xianye&rft.date=2019-06-01&rft.volume=28&rft.issue=6&rft.spage=3142&rft.epage=3157&rft.pages=3142-3157&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2019.2894362&rft_dat=%3Cproquest_RIE%3E2220394365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220394365&rft_id=info:pmid/30676959&rft_ieee_id=8624554&rfr_iscdi=true