Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties
This work reports on the synthesis of a novel bifunctional norbornene dicarboximide monomer (HFDA) based on 4,4′‐(hexafluoroisopropylidene)bis(p‐phenyleneoxy)dianiline and its application as a cross‐linking agent in the ring‐opening metathesis polymerization (ROMP) with N‐3‐trifluoromethylphenyl‐exo...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2019-05, Vol.220 (9), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 220 |
creator | Aranda‐Suárez, Ivette Corona‐García, Carlos Santiago, Arlette A. López Morales, Salvador Abatal, Mohamed López‐González, Mar Vargas, Joel |
description | This work reports on the synthesis of a novel bifunctional norbornene dicarboximide monomer (HFDA) based on 4,4′‐(hexafluoroisopropylidene)bis(p‐phenyleneoxy)dianiline and its application as a cross‐linking agent in the ring‐opening metathesis polymerization (ROMP) with N‐3‐trifluoromethylphenyl‐exo,endo‐norbornene‐5,6‐dicarboximide (mCF3) employing the Grubbs 2nd generation catalyst (I) and cis‐1,4‐diacetoxy‐2‐butene as a chain transfer agent (CTA) to yield a series of soluble nonlinear highly branched chains polymers with increasing degree of cross‐linking. A comparative study of gas transport in membranes based on these cross‐linked polynorbornene dicarboximides is performed and the gases studied are hydrogen, oxygen, nitrogen, carbon dioxide, methane, ethylene, and propylene. It is found that cross‐linking increases the gas permeability, leads to the highest separation factor reported to date for the H2/C3H6 mixture in this kind of polymers, and also enhances the CO2 plasticization resistance up to 14 atm upstream pressure. The chemical cross‐linking approach employed in this research is an effective tool to enhance gas transport properties for dense polynorbornene dicarboximide membranes.
A novel bifunctional norbornene dicarboximide cross‐linking monomer is synthesized and successfully employed to yield a series of soluble cross‐linked polynorbornene dicarboximides by ring‐opening metathesis polymerization (ROMP). A comparison of the gas transport properties in membranes prepared from the resulting cross‐linked polymers indicates that cross‐linking increases the gas permeability, improves the permselectivity coefficient for separating H2/C3H6 mixture, and enhances the CO2 plasticization resistance. |
doi_str_mv | 10.1002/macp.201800481 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220138234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220138234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3541-db3064d4119bea4c010684c08d6297b8d80d388eabe13eab8d8ec3e7dc5376133</originalsourceid><addsrcrecordid>eNqFUMtOwzAQtBBIQOHK2RLnFD_ycI4l0ILUikrA2XLiLXVJ4mKnQG58At_Il-CqCI5cdnZXM_sYhM4oGVJC2EWjqvWQESoIiQXdQ0c0YTTiOU_2Q04YiyhP2CE69n5FCBEkz47Q633fdkvwxmPVajxRHs_BNaBKU5uux3aBiyU0plJ13ePCWe-_Pj6npn0Gjee27lvrSutaaAFfBVYo3k1jNHh8CcqZ9gmP640NieqCYmYNdAb8CTpYqNrD6Q8O0OP4-qG4iaZ3k9tiNI0qnsQ00iUnaaxjSvMSVFwRSlIRQOiU5VkptCCaCxGuBcpDDA2oOGS6SniWUs4H6Hw3d-3sywZ8J1d249qwUjIWvOKC8TiwhjtWtf3PwUKunWmU6yUlcuut3Horf70NgnwneDM19P-w5WxUzP-032PugIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220138234</pqid></control><display><type>article</type><title>Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Aranda‐Suárez, Ivette ; Corona‐García, Carlos ; Santiago, Arlette A. ; López Morales, Salvador ; Abatal, Mohamed ; López‐González, Mar ; Vargas, Joel</creator><creatorcontrib>Aranda‐Suárez, Ivette ; Corona‐García, Carlos ; Santiago, Arlette A. ; López Morales, Salvador ; Abatal, Mohamed ; López‐González, Mar ; Vargas, Joel</creatorcontrib><description>This work reports on the synthesis of a novel bifunctional norbornene dicarboximide monomer (HFDA) based on 4,4′‐(hexafluoroisopropylidene)bis(p‐phenyleneoxy)dianiline and its application as a cross‐linking agent in the ring‐opening metathesis polymerization (ROMP) with N‐3‐trifluoromethylphenyl‐exo,endo‐norbornene‐5,6‐dicarboximide (mCF3) employing the Grubbs 2nd generation catalyst (I) and cis‐1,4‐diacetoxy‐2‐butene as a chain transfer agent (CTA) to yield a series of soluble nonlinear highly branched chains polymers with increasing degree of cross‐linking. A comparative study of gas transport in membranes based on these cross‐linked polynorbornene dicarboximides is performed and the gases studied are hydrogen, oxygen, nitrogen, carbon dioxide, methane, ethylene, and propylene. It is found that cross‐linking increases the gas permeability, leads to the highest separation factor reported to date for the H2/C3H6 mixture in this kind of polymers, and also enhances the CO2 plasticization resistance up to 14 atm upstream pressure. The chemical cross‐linking approach employed in this research is an effective tool to enhance gas transport properties for dense polynorbornene dicarboximide membranes.
A novel bifunctional norbornene dicarboximide cross‐linking monomer is synthesized and successfully employed to yield a series of soluble cross‐linked polynorbornene dicarboximides by ring‐opening metathesis polymerization (ROMP). A comparison of the gas transport properties in membranes prepared from the resulting cross‐linked polymers indicates that cross‐linking increases the gas permeability, improves the permselectivity coefficient for separating H2/C3H6 mixture, and enhances the CO2 plasticization resistance.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.201800481</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Chain branching ; Chain transfer ; Comparative studies ; cross‐linked polymer ; Fluorination ; gas permeability ; Gas transport ; Gases ; membrane ; Membranes ; Metathesis ; Nitrogen ; Organic chemistry ; Permeability ; Polymers ; Polynorbornene ; polynorbornene dicarboximide ; Propylene ; ring‐opening metathesis polymerization ; Synthesis ; Transport properties</subject><ispartof>Macromolecular chemistry and physics, 2019-05, Vol.220 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3541-db3064d4119bea4c010684c08d6297b8d80d388eabe13eab8d8ec3e7dc5376133</citedby><cites>FETCH-LOGICAL-c3541-db3064d4119bea4c010684c08d6297b8d80d388eabe13eab8d8ec3e7dc5376133</cites><orcidid>0000-0002-9227-8354 ; 0000-0002-8813-581X ; 0000-0003-4020-9936 ; 0000-0001-5610-1255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.201800481$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.201800481$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Aranda‐Suárez, Ivette</creatorcontrib><creatorcontrib>Corona‐García, Carlos</creatorcontrib><creatorcontrib>Santiago, Arlette A.</creatorcontrib><creatorcontrib>López Morales, Salvador</creatorcontrib><creatorcontrib>Abatal, Mohamed</creatorcontrib><creatorcontrib>López‐González, Mar</creatorcontrib><creatorcontrib>Vargas, Joel</creatorcontrib><title>Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties</title><title>Macromolecular chemistry and physics</title><description>This work reports on the synthesis of a novel bifunctional norbornene dicarboximide monomer (HFDA) based on 4,4′‐(hexafluoroisopropylidene)bis(p‐phenyleneoxy)dianiline and its application as a cross‐linking agent in the ring‐opening metathesis polymerization (ROMP) with N‐3‐trifluoromethylphenyl‐exo,endo‐norbornene‐5,6‐dicarboximide (mCF3) employing the Grubbs 2nd generation catalyst (I) and cis‐1,4‐diacetoxy‐2‐butene as a chain transfer agent (CTA) to yield a series of soluble nonlinear highly branched chains polymers with increasing degree of cross‐linking. A comparative study of gas transport in membranes based on these cross‐linked polynorbornene dicarboximides is performed and the gases studied are hydrogen, oxygen, nitrogen, carbon dioxide, methane, ethylene, and propylene. It is found that cross‐linking increases the gas permeability, leads to the highest separation factor reported to date for the H2/C3H6 mixture in this kind of polymers, and also enhances the CO2 plasticization resistance up to 14 atm upstream pressure. The chemical cross‐linking approach employed in this research is an effective tool to enhance gas transport properties for dense polynorbornene dicarboximide membranes.
A novel bifunctional norbornene dicarboximide cross‐linking monomer is synthesized and successfully employed to yield a series of soluble cross‐linked polynorbornene dicarboximides by ring‐opening metathesis polymerization (ROMP). A comparison of the gas transport properties in membranes prepared from the resulting cross‐linked polymers indicates that cross‐linking increases the gas permeability, improves the permselectivity coefficient for separating H2/C3H6 mixture, and enhances the CO2 plasticization resistance.</description><subject>Carbon dioxide</subject><subject>Chain branching</subject><subject>Chain transfer</subject><subject>Comparative studies</subject><subject>cross‐linked polymer</subject><subject>Fluorination</subject><subject>gas permeability</subject><subject>Gas transport</subject><subject>Gases</subject><subject>membrane</subject><subject>Membranes</subject><subject>Metathesis</subject><subject>Nitrogen</subject><subject>Organic chemistry</subject><subject>Permeability</subject><subject>Polymers</subject><subject>Polynorbornene</subject><subject>polynorbornene dicarboximide</subject><subject>Propylene</subject><subject>ring‐opening metathesis polymerization</subject><subject>Synthesis</subject><subject>Transport properties</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQtBBIQOHK2RLnFD_ycI4l0ILUikrA2XLiLXVJ4mKnQG58At_Il-CqCI5cdnZXM_sYhM4oGVJC2EWjqvWQESoIiQXdQ0c0YTTiOU_2Q04YiyhP2CE69n5FCBEkz47Q633fdkvwxmPVajxRHs_BNaBKU5uux3aBiyU0plJ13ePCWe-_Pj6npn0Gjee27lvrSutaaAFfBVYo3k1jNHh8CcqZ9gmP640NieqCYmYNdAb8CTpYqNrD6Q8O0OP4-qG4iaZ3k9tiNI0qnsQ00iUnaaxjSvMSVFwRSlIRQOiU5VkptCCaCxGuBcpDDA2oOGS6SniWUs4H6Hw3d-3sywZ8J1d249qwUjIWvOKC8TiwhjtWtf3PwUKunWmU6yUlcuut3Horf70NgnwneDM19P-w5WxUzP-032PugIw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Aranda‐Suárez, Ivette</creator><creator>Corona‐García, Carlos</creator><creator>Santiago, Arlette A.</creator><creator>López Morales, Salvador</creator><creator>Abatal, Mohamed</creator><creator>López‐González, Mar</creator><creator>Vargas, Joel</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9227-8354</orcidid><orcidid>https://orcid.org/0000-0002-8813-581X</orcidid><orcidid>https://orcid.org/0000-0003-4020-9936</orcidid><orcidid>https://orcid.org/0000-0001-5610-1255</orcidid></search><sort><creationdate>201905</creationdate><title>Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties</title><author>Aranda‐Suárez, Ivette ; Corona‐García, Carlos ; Santiago, Arlette A. ; López Morales, Salvador ; Abatal, Mohamed ; López‐González, Mar ; Vargas, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3541-db3064d4119bea4c010684c08d6297b8d80d388eabe13eab8d8ec3e7dc5376133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon dioxide</topic><topic>Chain branching</topic><topic>Chain transfer</topic><topic>Comparative studies</topic><topic>cross‐linked polymer</topic><topic>Fluorination</topic><topic>gas permeability</topic><topic>Gas transport</topic><topic>Gases</topic><topic>membrane</topic><topic>Membranes</topic><topic>Metathesis</topic><topic>Nitrogen</topic><topic>Organic chemistry</topic><topic>Permeability</topic><topic>Polymers</topic><topic>Polynorbornene</topic><topic>polynorbornene dicarboximide</topic><topic>Propylene</topic><topic>ring‐opening metathesis polymerization</topic><topic>Synthesis</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aranda‐Suárez, Ivette</creatorcontrib><creatorcontrib>Corona‐García, Carlos</creatorcontrib><creatorcontrib>Santiago, Arlette A.</creatorcontrib><creatorcontrib>López Morales, Salvador</creatorcontrib><creatorcontrib>Abatal, Mohamed</creatorcontrib><creatorcontrib>López‐González, Mar</creatorcontrib><creatorcontrib>Vargas, Joel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aranda‐Suárez, Ivette</au><au>Corona‐García, Carlos</au><au>Santiago, Arlette A.</au><au>López Morales, Salvador</au><au>Abatal, Mohamed</au><au>López‐González, Mar</au><au>Vargas, Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2019-05</date><risdate>2019</risdate><volume>220</volume><issue>9</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>This work reports on the synthesis of a novel bifunctional norbornene dicarboximide monomer (HFDA) based on 4,4′‐(hexafluoroisopropylidene)bis(p‐phenyleneoxy)dianiline and its application as a cross‐linking agent in the ring‐opening metathesis polymerization (ROMP) with N‐3‐trifluoromethylphenyl‐exo,endo‐norbornene‐5,6‐dicarboximide (mCF3) employing the Grubbs 2nd generation catalyst (I) and cis‐1,4‐diacetoxy‐2‐butene as a chain transfer agent (CTA) to yield a series of soluble nonlinear highly branched chains polymers with increasing degree of cross‐linking. A comparative study of gas transport in membranes based on these cross‐linked polynorbornene dicarboximides is performed and the gases studied are hydrogen, oxygen, nitrogen, carbon dioxide, methane, ethylene, and propylene. It is found that cross‐linking increases the gas permeability, leads to the highest separation factor reported to date for the H2/C3H6 mixture in this kind of polymers, and also enhances the CO2 plasticization resistance up to 14 atm upstream pressure. The chemical cross‐linking approach employed in this research is an effective tool to enhance gas transport properties for dense polynorbornene dicarboximide membranes.
A novel bifunctional norbornene dicarboximide cross‐linking monomer is synthesized and successfully employed to yield a series of soluble cross‐linked polynorbornene dicarboximides by ring‐opening metathesis polymerization (ROMP). A comparison of the gas transport properties in membranes prepared from the resulting cross‐linked polymers indicates that cross‐linking increases the gas permeability, improves the permselectivity coefficient for separating H2/C3H6 mixture, and enhances the CO2 plasticization resistance.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.201800481</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9227-8354</orcidid><orcidid>https://orcid.org/0000-0002-8813-581X</orcidid><orcidid>https://orcid.org/0000-0003-4020-9936</orcidid><orcidid>https://orcid.org/0000-0001-5610-1255</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2019-05, Vol.220 (9), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2220138234 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Carbon dioxide Chain branching Chain transfer Comparative studies cross‐linked polymer Fluorination gas permeability Gas transport Gases membrane Membranes Metathesis Nitrogen Organic chemistry Permeability Polymers Polynorbornene polynorbornene dicarboximide Propylene ring‐opening metathesis polymerization Synthesis Transport properties |
title | Synthesis and Gas Permeability of Chemically Cross‐Linked Polynorbornene Dicarboximides Bearing Fluorinated Moieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T03%3A20%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Gas%20Permeability%20of%20Chemically%20Cross%E2%80%90Linked%20Polynorbornene%20Dicarboximides%20Bearing%20Fluorinated%20Moieties&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Aranda%E2%80%90Su%C3%A1rez,%20Ivette&rft.date=2019-05&rft.volume=220&rft.issue=9&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.201800481&rft_dat=%3Cproquest_cross%3E2220138234%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220138234&rft_id=info:pmid/&rfr_iscdi=true |