Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space
In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by severa...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2019-06, Vol.42 (9), p.3136-3166 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3166 |
---|---|
container_issue | 9 |
container_start_page | 3136 |
container_title | Mathematical methods in the applied sciences |
container_volume | 42 |
creator | Hu, Shichang Wang, Zhigang Tang, Xiaoqing |
description | In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results. |
doi_str_mv | 10.1002/mma.5574 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220130222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220130222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj52NzmWolVo8VLBW8imCWx3u1uTrqWefASf0Scx7QqePA0z82MG_ghdExgRAHq3XutRmub8BA0ISJkQnmenaAAkh4RTws_RRQgrABCE0AF6XXRFV2uPQ-edNjbg1mFjm6312HT-_TBocNjEVV1W9o-VDZ61PsKP78-vedlU7S5UJWaxO-pLdOZ0HezVbx2il4f7xeQxmT1PnybjWWKoZDzhQqSGpM4KXeSZk0wzLlhuuJTcMUalI0YXhUiFpXnGtKMFuGWRgQRwbEnZEN30dze-fets2KpV2_kmvlSUUiAMYonqtlfGtyF469TGl2vt94qAOuSmYm7qkFukSU93ZW33_zo1n4-P_geOZXA-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220130222</pqid></control><display><type>article</type><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><source>Wiley-Blackwell Journals</source><creator>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</creator><creatorcontrib>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</creatorcontrib><description>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5574</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Curves ; differentiable maps ; Lorentzian Darboux frame ; Minkowski space ; non‐Euclidean differential geometry ; singularity ; Singularity (mathematics) ; tubular surfaces</subject><ispartof>Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.3136-3166</ispartof><rights>2019 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</citedby><cites>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</cites><orcidid>0000-0003-4920-2386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hu, Shichang</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Tang, Xiaoqing</creatorcontrib><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</description><subject>Curves</subject><subject>differentiable maps</subject><subject>Lorentzian Darboux frame</subject><subject>Minkowski space</subject><subject>non‐Euclidean differential geometry</subject><subject>singularity</subject><subject>Singularity (mathematics)</subject><subject>tubular surfaces</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj52NzmWolVo8VLBW8imCWx3u1uTrqWefASf0Scx7QqePA0z82MG_ghdExgRAHq3XutRmub8BA0ISJkQnmenaAAkh4RTws_RRQgrABCE0AF6XXRFV2uPQ-edNjbg1mFjm6312HT-_TBocNjEVV1W9o-VDZ61PsKP78-vedlU7S5UJWaxO-pLdOZ0HezVbx2il4f7xeQxmT1PnybjWWKoZDzhQqSGpM4KXeSZk0wzLlhuuJTcMUalI0YXhUiFpXnGtKMFuGWRgQRwbEnZEN30dze-fets2KpV2_kmvlSUUiAMYonqtlfGtyF469TGl2vt94qAOuSmYm7qkFukSU93ZW33_zo1n4-P_geOZXA-</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Hu, Shichang</creator><creator>Wang, Zhigang</creator><creator>Tang, Xiaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4920-2386</orcidid></search><sort><creationdate>201906</creationdate><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><author>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curves</topic><topic>differentiable maps</topic><topic>Lorentzian Darboux frame</topic><topic>Minkowski space</topic><topic>non‐Euclidean differential geometry</topic><topic>singularity</topic><topic>Singularity (mathematics)</topic><topic>tubular surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shichang</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Tang, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shichang</au><au>Wang, Zhigang</au><au>Tang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-06</date><risdate>2019</risdate><volume>42</volume><issue>9</issue><spage>3136</spage><epage>3166</epage><pages>3136-3166</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5574</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4920-2386</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.3136-3166 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2220130222 |
source | Wiley-Blackwell Journals |
subjects | Curves differentiable maps Lorentzian Darboux frame Minkowski space non‐Euclidean differential geometry singularity Singularity (mathematics) tubular surfaces |
title | Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tubular%20surfaces%20of%20center%20curves%20on%20spacelike%20surfaces%20in%20Lorentz%E2%80%90Minkowski%203%E2%80%90space&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hu,%20Shichang&rft.date=2019-06&rft.volume=42&rft.issue=9&rft.spage=3136&rft.epage=3166&rft.pages=3136-3166&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5574&rft_dat=%3Cproquest_cross%3E2220130222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220130222&rft_id=info:pmid/&rfr_iscdi=true |