Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space

In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by severa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2019-06, Vol.42 (9), p.3136-3166
Hauptverfasser: Hu, Shichang, Wang, Zhigang, Tang, Xiaoqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3166
container_issue 9
container_start_page 3136
container_title Mathematical methods in the applied sciences
container_volume 42
creator Hu, Shichang
Wang, Zhigang
Tang, Xiaoqing
description In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.
doi_str_mv 10.1002/mma.5574
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2220130222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2220130222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj52NzmWolVo8VLBW8imCWx3u1uTrqWefASf0Scx7QqePA0z82MG_ghdExgRAHq3XutRmub8BA0ISJkQnmenaAAkh4RTws_RRQgrABCE0AF6XXRFV2uPQ-edNjbg1mFjm6312HT-_TBocNjEVV1W9o-VDZ61PsKP78-vedlU7S5UJWaxO-pLdOZ0HezVbx2il4f7xeQxmT1PnybjWWKoZDzhQqSGpM4KXeSZk0wzLlhuuJTcMUalI0YXhUiFpXnGtKMFuGWRgQRwbEnZEN30dze-fets2KpV2_kmvlSUUiAMYonqtlfGtyF469TGl2vt94qAOuSmYm7qkFukSU93ZW33_zo1n4-P_geOZXA-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220130222</pqid></control><display><type>article</type><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><source>Wiley-Blackwell Journals</source><creator>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</creator><creatorcontrib>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</creatorcontrib><description>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.5574</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Curves ; differentiable maps ; Lorentzian Darboux frame ; Minkowski space ; non‐Euclidean differential geometry ; singularity ; Singularity (mathematics) ; tubular surfaces</subject><ispartof>Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.3136-3166</ispartof><rights>2019 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</citedby><cites>FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</cites><orcidid>0000-0003-4920-2386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.5574$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.5574$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Hu, Shichang</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Tang, Xiaoqing</creatorcontrib><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><title>Mathematical methods in the applied sciences</title><description>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</description><subject>Curves</subject><subject>differentiable maps</subject><subject>Lorentzian Darboux frame</subject><subject>Minkowski space</subject><subject>non‐Euclidean differential geometry</subject><subject>singularity</subject><subject>Singularity (mathematics)</subject><subject>tubular surfaces</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162Tj52NzmWolVo8VLBW8imCWx3u1uTrqWefASf0Scx7QqePA0z82MG_ghdExgRAHq3XutRmub8BA0ISJkQnmenaAAkh4RTws_RRQgrABCE0AF6XXRFV2uPQ-edNjbg1mFjm6312HT-_TBocNjEVV1W9o-VDZ61PsKP78-vedlU7S5UJWaxO-pLdOZ0HezVbx2il4f7xeQxmT1PnybjWWKoZDzhQqSGpM4KXeSZk0wzLlhuuJTcMUalI0YXhUiFpXnGtKMFuGWRgQRwbEnZEN30dze-fets2KpV2_kmvlSUUiAMYonqtlfGtyF469TGl2vt94qAOuSmYm7qkFukSU93ZW33_zo1n4-P_geOZXA-</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Hu, Shichang</creator><creator>Wang, Zhigang</creator><creator>Tang, Xiaoqing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4920-2386</orcidid></search><sort><creationdate>201906</creationdate><title>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</title><author>Hu, Shichang ; Wang, Zhigang ; Tang, Xiaoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-4885c15fe8ab76f93a34837c4994f3329f1cabb858e2763af2b0fdb60900f3d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Curves</topic><topic>differentiable maps</topic><topic>Lorentzian Darboux frame</topic><topic>Minkowski space</topic><topic>non‐Euclidean differential geometry</topic><topic>singularity</topic><topic>Singularity (mathematics)</topic><topic>tubular surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shichang</creatorcontrib><creatorcontrib>Wang, Zhigang</creatorcontrib><creatorcontrib>Tang, Xiaoqing</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shichang</au><au>Wang, Zhigang</au><au>Tang, Xiaoqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2019-06</date><risdate>2019</risdate><volume>42</volume><issue>9</issue><spage>3136</spage><epage>3166</epage><pages>3136-3166</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, we introduce three kinds of tubular surfaces associated to original center curves γ lying in spacelike surfaces in Lorentz‐Minkowski 3‐space. It is demonstrated that these tubular surfaces can occur some singularities and the types of these singularities can be characterised by several invariants, respectively. Some interesting relations between the contacts of original curve γ with osculating model surfaces, the contacts of γ with slices, and the singularities of three kinds of surfaces are further revealed. Several examples are presented to explain the theoretical results.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.5574</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0003-4920-2386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2019-06, Vol.42 (9), p.3136-3166
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2220130222
source Wiley-Blackwell Journals
subjects Curves
differentiable maps
Lorentzian Darboux frame
Minkowski space
non‐Euclidean differential geometry
singularity
Singularity (mathematics)
tubular surfaces
title Tubular surfaces of center curves on spacelike surfaces in Lorentz‐Minkowski 3‐space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tubular%20surfaces%20of%20center%20curves%20on%20spacelike%20surfaces%20in%20Lorentz%E2%80%90Minkowski%203%E2%80%90space&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Hu,%20Shichang&rft.date=2019-06&rft.volume=42&rft.issue=9&rft.spage=3136&rft.epage=3166&rft.pages=3136-3166&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.5574&rft_dat=%3Cproquest_cross%3E2220130222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220130222&rft_id=info:pmid/&rfr_iscdi=true