Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation
Hyperbranched polyaromatic polymer (HBP) based on pyridylphenylene dendrimer as a multifunctional monomer was employed as a nanoreactor and a stabilizing matrix for synthesis of catalytic Ni nanoparticles (NPs). The HBP was found to have an effective control over NP size. The Ni NPs synthesized in H...
Gespeichert in:
Veröffentlicht in: | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2019-05, Vol.21 (5), p.1-14, Article 91 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology |
container_volume | 21 |
creator | Basaveni, S. Kuchkina, N. V. Shifrina, Z. B. Pal, M. Rajadurai, M. |
description | Hyperbranched polyaromatic polymer (HBP) based on pyridylphenylene dendrimer as a multifunctional monomer was employed as a nanoreactor and a stabilizing matrix for synthesis of catalytic Ni nanoparticles (NPs). The HBP was found to have an effective control over NP size. The Ni NPs synthesized in HBP matrix had diameter between 3 and 4.5 nm with narrow size distribution and were reproducible in several batches. The HBP-encapsulated Ni NPs (Ni-HBP) had a good air stability, high activity, and controlled reactivity in catalytic transfer hydrogenation (CTH) of nitroarenes and alkenes. The catalytic reactions were performed under base-free, heterogeneously-catalyzed conditions without use of high pressure, strong acidic media, or highly flammable hydrogen source. This reduction system showed good tolerance towards hydroxyl, alkyne, or halogen substituents. Moreover, due to mild nature of the catalyst, the reaction may be controlled to selectively reduce only one functional group, leaving another one intact (e.g., nitro-group vs internal alkyne).
Graphical abstract |
doi_str_mv | 10.1007/s11051-019-4533-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219879024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219879024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-53bdaed158cea3b78b08ec364faee413076d5b2a5ec71c844cbf917df32f3e8a3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRSMEEqXwAewssW3Aj6RxlqjiJVWwAYmdNXEmbarEDra7yF_wybgNEitWHs_ce0Zzk-Sa0VtGaXHnGaM5Sykr0ywXIuUnyYzlBU9lufw8jbWQMqXFMjtPLrzfUcqWvOSz5Pu1JQaMHcCFVnfoiTVksN0IzvYQW2Q7DugqB0ZvsT6OenTE74fBukDAEyB929ULEvYGqg4XBEwd5z5Ae2wQDQG60QfSWPf7OYBDZPomsrZj7ewGTVxnzWVy1kDn8er3nScfjw_vq-d0_fb0srpfp1rkIqS5qGrAmuVSI4iqkBWVqMUyawAxYyKeWucVhxx1wbTMMl01JSvqRvBGoAQxT24m7uDs1x59UDu7dyauVJyzUhYl5VlUsUmlnfXeYaMG1_bgRsWoOgSvpuBVDF4dglc8evjk8VFrNuj-yP-bfgAyTYrD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219879024</pqid></control><display><type>article</type><title>Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation</title><source>SpringerNature Complete Journals</source><creator>Basaveni, S. ; Kuchkina, N. V. ; Shifrina, Z. B. ; Pal, M. ; Rajadurai, M.</creator><creatorcontrib>Basaveni, S. ; Kuchkina, N. V. ; Shifrina, Z. B. ; Pal, M. ; Rajadurai, M.</creatorcontrib><description>Hyperbranched polyaromatic polymer (HBP) based on pyridylphenylene dendrimer as a multifunctional monomer was employed as a nanoreactor and a stabilizing matrix for synthesis of catalytic Ni nanoparticles (NPs). The HBP was found to have an effective control over NP size. The Ni NPs synthesized in HBP matrix had diameter between 3 and 4.5 nm with narrow size distribution and were reproducible in several batches. The HBP-encapsulated Ni NPs (Ni-HBP) had a good air stability, high activity, and controlled reactivity in catalytic transfer hydrogenation (CTH) of nitroarenes and alkenes. The catalytic reactions were performed under base-free, heterogeneously-catalyzed conditions without use of high pressure, strong acidic media, or highly flammable hydrogen source. This reduction system showed good tolerance towards hydroxyl, alkyne, or halogen substituents. Moreover, due to mild nature of the catalyst, the reaction may be controlled to selectively reduce only one functional group, leaving another one intact (e.g., nitro-group vs internal alkyne).
Graphical abstract</description><identifier>ISSN: 1388-0764</identifier><identifier>EISSN: 1572-896X</identifier><identifier>DOI: 10.1007/s11051-019-4533-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alkenes ; Alkynes ; Catalysis ; Catalysts ; Characterization and Evaluation of Materials ; Chemical reactions ; Chemical synthesis ; Chemistry and Materials Science ; Control stability ; Flammability ; Functional groups ; High pressure ; Hydrogen storage ; Hydrogenation ; Inorganic Chemistry ; Lasers ; Materials Science ; Nanoparticles ; Nanotechnology ; Optical Devices ; Optics ; Photonics ; Physical Chemistry ; Polymers ; Research Paper ; Size distribution</subject><ispartof>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2019-05, Vol.21 (5), p.1-14, Article 91</ispartof><rights>Springer Nature B.V. 2019</rights><rights>Journal of Nanoparticle Research is a copyright of Springer, (2019). All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-53bdaed158cea3b78b08ec364faee413076d5b2a5ec71c844cbf917df32f3e8a3</citedby><cites>FETCH-LOGICAL-c353t-53bdaed158cea3b78b08ec364faee413076d5b2a5ec71c844cbf917df32f3e8a3</cites><orcidid>0000-0003-3367-1946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11051-019-4533-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11051-019-4533-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Basaveni, S.</creatorcontrib><creatorcontrib>Kuchkina, N. V.</creatorcontrib><creatorcontrib>Shifrina, Z. B.</creatorcontrib><creatorcontrib>Pal, M.</creatorcontrib><creatorcontrib>Rajadurai, M.</creatorcontrib><title>Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation</title><title>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</title><addtitle>J Nanopart Res</addtitle><description>Hyperbranched polyaromatic polymer (HBP) based on pyridylphenylene dendrimer as a multifunctional monomer was employed as a nanoreactor and a stabilizing matrix for synthesis of catalytic Ni nanoparticles (NPs). The HBP was found to have an effective control over NP size. The Ni NPs synthesized in HBP matrix had diameter between 3 and 4.5 nm with narrow size distribution and were reproducible in several batches. The HBP-encapsulated Ni NPs (Ni-HBP) had a good air stability, high activity, and controlled reactivity in catalytic transfer hydrogenation (CTH) of nitroarenes and alkenes. The catalytic reactions were performed under base-free, heterogeneously-catalyzed conditions without use of high pressure, strong acidic media, or highly flammable hydrogen source. This reduction system showed good tolerance towards hydroxyl, alkyne, or halogen substituents. Moreover, due to mild nature of the catalyst, the reaction may be controlled to selectively reduce only one functional group, leaving another one intact (e.g., nitro-group vs internal alkyne).
Graphical abstract</description><subject>Alkenes</subject><subject>Alkynes</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Control stability</subject><subject>Flammability</subject><subject>Functional groups</subject><subject>High pressure</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Inorganic Chemistry</subject><subject>Lasers</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Research Paper</subject><subject>Size distribution</subject><issn>1388-0764</issn><issn>1572-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kMtOwzAQRSMEEqXwAewssW3Aj6RxlqjiJVWwAYmdNXEmbarEDra7yF_wybgNEitWHs_ce0Zzk-Sa0VtGaXHnGaM5Sykr0ywXIuUnyYzlBU9lufw8jbWQMqXFMjtPLrzfUcqWvOSz5Pu1JQaMHcCFVnfoiTVksN0IzvYQW2Q7DugqB0ZvsT6OenTE74fBukDAEyB929ULEvYGqg4XBEwd5z5Ae2wQDQG60QfSWPf7OYBDZPomsrZj7ewGTVxnzWVy1kDn8er3nScfjw_vq-d0_fb0srpfp1rkIqS5qGrAmuVSI4iqkBWVqMUyawAxYyKeWucVhxx1wbTMMl01JSvqRvBGoAQxT24m7uDs1x59UDu7dyauVJyzUhYl5VlUsUmlnfXeYaMG1_bgRsWoOgSvpuBVDF4dglc8evjk8VFrNuj-yP-bfgAyTYrD</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Basaveni, S.</creator><creator>Kuchkina, N. V.</creator><creator>Shifrina, Z. B.</creator><creator>Pal, M.</creator><creator>Rajadurai, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-3367-1946</orcidid></search><sort><creationdate>20190501</creationdate><title>Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation</title><author>Basaveni, S. ; Kuchkina, N. V. ; Shifrina, Z. B. ; Pal, M. ; Rajadurai, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-53bdaed158cea3b78b08ec364faee413076d5b2a5ec71c844cbf917df32f3e8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alkenes</topic><topic>Alkynes</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Control stability</topic><topic>Flammability</topic><topic>Functional groups</topic><topic>High pressure</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Inorganic Chemistry</topic><topic>Lasers</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Research Paper</topic><topic>Size distribution</topic><toplevel>online_resources</toplevel><creatorcontrib>Basaveni, S.</creatorcontrib><creatorcontrib>Kuchkina, N. V.</creatorcontrib><creatorcontrib>Shifrina, Z. B.</creatorcontrib><creatorcontrib>Pal, M.</creatorcontrib><creatorcontrib>Rajadurai, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basaveni, S.</au><au>Kuchkina, N. V.</au><au>Shifrina, Z. B.</au><au>Pal, M.</au><au>Rajadurai, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation</atitle><jtitle>Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology</jtitle><stitle>J Nanopart Res</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>21</volume><issue>5</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>91</artnum><issn>1388-0764</issn><eissn>1572-896X</eissn><abstract>Hyperbranched polyaromatic polymer (HBP) based on pyridylphenylene dendrimer as a multifunctional monomer was employed as a nanoreactor and a stabilizing matrix for synthesis of catalytic Ni nanoparticles (NPs). The HBP was found to have an effective control over NP size. The Ni NPs synthesized in HBP matrix had diameter between 3 and 4.5 nm with narrow size distribution and were reproducible in several batches. The HBP-encapsulated Ni NPs (Ni-HBP) had a good air stability, high activity, and controlled reactivity in catalytic transfer hydrogenation (CTH) of nitroarenes and alkenes. The catalytic reactions were performed under base-free, heterogeneously-catalyzed conditions without use of high pressure, strong acidic media, or highly flammable hydrogen source. This reduction system showed good tolerance towards hydroxyl, alkyne, or halogen substituents. Moreover, due to mild nature of the catalyst, the reaction may be controlled to selectively reduce only one functional group, leaving another one intact (e.g., nitro-group vs internal alkyne).
Graphical abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11051-019-4533-2</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3367-1946</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-0764 |
ispartof | Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology, 2019-05, Vol.21 (5), p.1-14, Article 91 |
issn | 1388-0764 1572-896X |
language | eng |
recordid | cdi_proquest_journals_2219879024 |
source | SpringerNature Complete Journals |
subjects | Alkenes Alkynes Catalysis Catalysts Characterization and Evaluation of Materials Chemical reactions Chemical synthesis Chemistry and Materials Science Control stability Flammability Functional groups High pressure Hydrogen storage Hydrogenation Inorganic Chemistry Lasers Materials Science Nanoparticles Nanotechnology Optical Devices Optics Photonics Physical Chemistry Polymers Research Paper Size distribution |
title | Ni nanoparticles on polyaromatic hyperbranched polymer support as a mild, tunable, and sustainable catalyst for catalytic transfer hydrogenation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ni%20nanoparticles%20on%20polyaromatic%20hyperbranched%20polymer%20support%20as%20a%20mild,%20tunable,%20and%20sustainable%20catalyst%20for%20catalytic%20transfer%20hydrogenation&rft.jtitle=Journal%20of%20nanoparticle%20research%20:%20an%20interdisciplinary%20forum%20for%20nanoscale%20science%20and%20technology&rft.au=Basaveni,%20S.&rft.date=2019-05-01&rft.volume=21&rft.issue=5&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=91&rft.issn=1388-0764&rft.eissn=1572-896X&rft_id=info:doi/10.1007/s11051-019-4533-2&rft_dat=%3Cproquest_cross%3E2219879024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219879024&rft_id=info:pmid/&rfr_iscdi=true |