Discriminative transfer learning via local and global structure preservation

The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2019-06, Vol.13 (4), p.753-760
Hauptverfasser: Wang, Chao, Tuo, Hongya, Wang, Jiexin, Qiao, Lingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 4
container_start_page 753
container_title Signal, image and video processing
container_volume 13
creator Wang, Chao
Tuo, Hongya
Wang, Jiexin
Qiao, Lingfeng
description The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing conditions. Most previous works focus on how to reduce the distribution discrepancy between two involved domains, or exploit the shared common feature by preserving the local geometric structure of samples. In this paper, we propose a modified method jointly optimizing the local and global structure preservation. The main idea is to explore common features with manifold regularization. Discriminative repulsive force model is used to improve maximum mean discrepancy, which keeps discriminative property in the local sense via labeled source domain data and alleviates the global distribution discrepancy of the different domains. Quantitative results indicate that our method performs better than other methods on 16 cross-domain experiments.
doi_str_mv 10.1007/s11760-018-1405-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2219656565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219656565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1d10ee6df42f329a58217218ceb4b53a159a0d517ee932a41a0c5b73f5a27b753</originalsourceid><addsrcrecordid>eNp1kE9PwzAMxSMEEtPYB-AWiXMhTpqmPaLxZ0iTuMA5clN36lTSkbST-PZkKoIT9sHv8H62_Bi7BnELQpi7CGAKkQkoM8iFzswZW0BZqAwMwPmvFuqSrWLci1RKmrIoF2z70EUXuo_O49gdiY8BfWwp8J4w-M7v-LFD3g8Oe46-4bt-qJOMY5jcOAXih0CRwjHRg79iFy32kVY_c8nenx7f1pts-_r8sr7fZk5BMWbQgCAqmjaXrZIV6lKCkVA6qvNaKwRdoWg0GKJKScwBhdO1Ua1GaWqj1ZLdzHsPYficKI52P0zBp5NWSqgKferkgtnlwhBjoNYe0qMYviwIe8rNzrnZlJs95WZNYuTMxOT1Owp_m_-HvgGKEXAU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219656565</pqid></control><display><type>article</type><title>Discriminative transfer learning via local and global structure preservation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Chao ; Tuo, Hongya ; Wang, Jiexin ; Qiao, Lingfeng</creator><creatorcontrib>Wang, Chao ; Tuo, Hongya ; Wang, Jiexin ; Qiao, Lingfeng</creatorcontrib><description>The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing conditions. Most previous works focus on how to reduce the distribution discrepancy between two involved domains, or exploit the shared common feature by preserving the local geometric structure of samples. In this paper, we propose a modified method jointly optimizing the local and global structure preservation. The main idea is to explore common features with manifold regularization. Discriminative repulsive force model is used to improve maximum mean discrepancy, which keeps discriminative property in the local sense via labeled source domain data and alleviates the global distribution discrepancy of the different domains. Quantitative results indicate that our method performs better than other methods on 16 cross-domain experiments.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-018-1405-7</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Imaging ; Computer Science ; Data transfer (computers) ; Domains ; Image Processing and Computer Vision ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Preservation ; Regularization ; Signal,Image and Speech Processing ; Supervised learning ; Vision</subject><ispartof>Signal, image and video processing, 2019-06, Vol.13 (4), p.753-760</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1d10ee6df42f329a58217218ceb4b53a159a0d517ee932a41a0c5b73f5a27b753</citedby><cites>FETCH-LOGICAL-c316t-1d10ee6df42f329a58217218ceb4b53a159a0d517ee932a41a0c5b73f5a27b753</cites><orcidid>0000-0002-3284-3673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-018-1405-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-018-1405-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Tuo, Hongya</creatorcontrib><creatorcontrib>Wang, Jiexin</creatorcontrib><creatorcontrib>Qiao, Lingfeng</creatorcontrib><title>Discriminative transfer learning via local and global structure preservation</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing conditions. Most previous works focus on how to reduce the distribution discrepancy between two involved domains, or exploit the shared common feature by preserving the local geometric structure of samples. In this paper, we propose a modified method jointly optimizing the local and global structure preservation. The main idea is to explore common features with manifold regularization. Discriminative repulsive force model is used to improve maximum mean discrepancy, which keeps discriminative property in the local sense via labeled source domain data and alleviates the global distribution discrepancy of the different domains. Quantitative results indicate that our method performs better than other methods on 16 cross-domain experiments.</description><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Data transfer (computers)</subject><subject>Domains</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Preservation</subject><subject>Regularization</subject><subject>Signal,Image and Speech Processing</subject><subject>Supervised learning</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9PwzAMxSMEEtPYB-AWiXMhTpqmPaLxZ0iTuMA5clN36lTSkbST-PZkKoIT9sHv8H62_Bi7BnELQpi7CGAKkQkoM8iFzswZW0BZqAwMwPmvFuqSrWLci1RKmrIoF2z70EUXuo_O49gdiY8BfWwp8J4w-M7v-LFD3g8Oe46-4bt-qJOMY5jcOAXih0CRwjHRg79iFy32kVY_c8nenx7f1pts-_r8sr7fZk5BMWbQgCAqmjaXrZIV6lKCkVA6qvNaKwRdoWg0GKJKScwBhdO1Ua1GaWqj1ZLdzHsPYficKI52P0zBp5NWSqgKferkgtnlwhBjoNYe0qMYviwIe8rNzrnZlJs95WZNYuTMxOT1Owp_m_-HvgGKEXAU</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Wang, Chao</creator><creator>Tuo, Hongya</creator><creator>Wang, Jiexin</creator><creator>Qiao, Lingfeng</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3284-3673</orcidid></search><sort><creationdate>20190601</creationdate><title>Discriminative transfer learning via local and global structure preservation</title><author>Wang, Chao ; Tuo, Hongya ; Wang, Jiexin ; Qiao, Lingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1d10ee6df42f329a58217218ceb4b53a159a0d517ee932a41a0c5b73f5a27b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Data transfer (computers)</topic><topic>Domains</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Preservation</topic><topic>Regularization</topic><topic>Signal,Image and Speech Processing</topic><topic>Supervised learning</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Tuo, Hongya</creatorcontrib><creatorcontrib>Wang, Jiexin</creatorcontrib><creatorcontrib>Qiao, Lingfeng</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chao</au><au>Tuo, Hongya</au><au>Wang, Jiexin</au><au>Qiao, Lingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discriminative transfer learning via local and global structure preservation</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>13</volume><issue>4</issue><spage>753</spage><epage>760</epage><pages>753-760</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>The current success of supervised learning is limited on large amounts of labeled training data. Transfer learning aims to learn an adaptive classifier for the unlabeled target domain data from the labeled source domain data, which is sampled from diverse probability distributions under changing conditions. Most previous works focus on how to reduce the distribution discrepancy between two involved domains, or exploit the shared common feature by preserving the local geometric structure of samples. In this paper, we propose a modified method jointly optimizing the local and global structure preservation. The main idea is to explore common features with manifold regularization. Discriminative repulsive force model is used to improve maximum mean discrepancy, which keeps discriminative property in the local sense via labeled source domain data and alleviates the global distribution discrepancy of the different domains. Quantitative results indicate that our method performs better than other methods on 16 cross-domain experiments.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-018-1405-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3284-3673</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2019-06, Vol.13 (4), p.753-760
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2219656565
source SpringerLink Journals - AutoHoldings
subjects Computer Imaging
Computer Science
Data transfer (computers)
Domains
Image Processing and Computer Vision
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Preservation
Regularization
Signal,Image and Speech Processing
Supervised learning
Vision
title Discriminative transfer learning via local and global structure preservation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discriminative%20transfer%20learning%20via%20local%20and%20global%20structure%20preservation&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Wang,%20Chao&rft.date=2019-06-01&rft.volume=13&rft.issue=4&rft.spage=753&rft.epage=760&rft.pages=753-760&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-018-1405-7&rft_dat=%3Cproquest_cross%3E2219656565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2219656565&rft_id=info:pmid/&rfr_iscdi=true