Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure

Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-06, Vol.788, p.881-890
Hauptverfasser: Bartha, Kristína, Zháňal, Pavel, Stráský, Josef, Čížek, Jakub, Dopita, Milan, Lukáč, František, Harcuba, Petr, Hájek, Michal, Polyakova, Veronika, Semenova, Irina, Janeček, Miloš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 890
container_issue
container_start_page 881
container_title Journal of alloys and compounds
container_volume 788
creator Bartha, Kristína
Zháňal, Pavel
Stráský, Josef
Čížek, Jakub
Dopita, Milan
Lukáč, František
Harcuba, Petr
Hájek, Michal
Polyakova, Veronika
Semenova, Irina
Janeček, Miloš
description Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening. •Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.
doi_str_mv 10.1016/j.jallcom.2019.02.173
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218962560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819306255</els_id><sourcerecordid>2218962560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</originalsourceid><addsrcrecordid>eNqFkE-L2zAQxUXZhWbT_QgLgp7t6o9l2acSQndbCO0lPQtZGm1lbCuV5IWc9qtXIbn39GDmzZuZH0JPlNSU0PbLWI96mkyYa0ZoXxNWU8k_oA3tJK-atu3v0Ib0TFQd77qP6CGlkZDi5HSD3g86Z28AW3BgcsJ-wQneIMJ0vtRCnMHiwYci3ugJH33V7qZK_hxwWRrOWC8W5z8Q59JMWQ9-8vmMg8O-pK1TjrpyfgH8GnURi2dvYkg5riavET6he6enBI833aLfz9-O--_V4dfLj_3uUJmG8FzxXkrR2Ebo8rGQnWkk06xtjbNu0Jy4wTIue2HNIEEMjkomNB-o1Fb2hBi-RZ-vuacY_q6QshrDGpeyUjFGu75loiXFJa6uy4kpglOn6Gcdz4oSdWGtRnVjrS6sFWGqsC5zX69zUF548xBVMh4WU5jFQlXZ4P-T8A8g9Iwp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962560</pqid></control><display><type>article</type><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><source>Elsevier ScienceDirect Journals</source><creator>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</creator><creatorcontrib>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</creatorcontrib><description>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening. •Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.02.173</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Biocompatibility ; Biomedical materials ; Clusters ; Crystal defects ; Deformation mechanisms ; Deformation resistance ; Dislocation density ; Electrical resistance ; Equal channel angular pressing ; Extrusion ; Heat treatment ; Heating ; Lattice vacancies ; Microhardness ; Microstructure ; Positron annihilation ; Positron annihilation spectroscopy ; Recrystallization ; Scanning electron microscopy ; Solid solutions ; Solution strengthening ; Spectroscopy ; Spectrum analysis ; Substitutional solid solutions ; Surgical implants ; Thermal stability ; Titanium alloys ; Titanium base alloys ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-06, Vol.788, p.881-890</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</citedby><cites>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</cites><orcidid>0000-0003-2497-657X ; 0000-0001-9961-8545 ; 0000-0003-2785-1190 ; 0000-0001-5027-4868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.02.173$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Bartha, Kristína</creatorcontrib><creatorcontrib>Zháňal, Pavel</creatorcontrib><creatorcontrib>Stráský, Josef</creatorcontrib><creatorcontrib>Čížek, Jakub</creatorcontrib><creatorcontrib>Dopita, Milan</creatorcontrib><creatorcontrib>Lukáč, František</creatorcontrib><creatorcontrib>Harcuba, Petr</creatorcontrib><creatorcontrib>Hájek, Michal</creatorcontrib><creatorcontrib>Polyakova, Veronika</creatorcontrib><creatorcontrib>Semenova, Irina</creatorcontrib><creatorcontrib>Janeček, Miloš</creatorcontrib><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><title>Journal of alloys and compounds</title><description>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening. •Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Clusters</subject><subject>Crystal defects</subject><subject>Deformation mechanisms</subject><subject>Deformation resistance</subject><subject>Dislocation density</subject><subject>Electrical resistance</subject><subject>Equal channel angular pressing</subject><subject>Extrusion</subject><subject>Heat treatment</subject><subject>Heating</subject><subject>Lattice vacancies</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Positron annihilation</subject><subject>Positron annihilation spectroscopy</subject><subject>Recrystallization</subject><subject>Scanning electron microscopy</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substitutional solid solutions</subject><subject>Surgical implants</subject><subject>Thermal stability</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE-L2zAQxUXZhWbT_QgLgp7t6o9l2acSQndbCO0lPQtZGm1lbCuV5IWc9qtXIbn39GDmzZuZH0JPlNSU0PbLWI96mkyYa0ZoXxNWU8k_oA3tJK-atu3v0Ib0TFQd77qP6CGlkZDi5HSD3g86Z28AW3BgcsJ-wQneIMJ0vtRCnMHiwYci3ugJH33V7qZK_hxwWRrOWC8W5z8Q59JMWQ9-8vmMg8O-pK1TjrpyfgH8GnURi2dvYkg5riavET6he6enBI833aLfz9-O--_V4dfLj_3uUJmG8FzxXkrR2Ebo8rGQnWkk06xtjbNu0Jy4wTIue2HNIEEMjkomNB-o1Fb2hBi-RZ-vuacY_q6QshrDGpeyUjFGu75loiXFJa6uy4kpglOn6Gcdz4oSdWGtRnVjrS6sFWGqsC5zX69zUF548xBVMh4WU5jFQlXZ4P-T8A8g9Iwp</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Bartha, Kristína</creator><creator>Zháňal, Pavel</creator><creator>Stráský, Josef</creator><creator>Čížek, Jakub</creator><creator>Dopita, Milan</creator><creator>Lukáč, František</creator><creator>Harcuba, Petr</creator><creator>Hájek, Michal</creator><creator>Polyakova, Veronika</creator><creator>Semenova, Irina</creator><creator>Janeček, Miloš</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2497-657X</orcidid><orcidid>https://orcid.org/0000-0001-9961-8545</orcidid><orcidid>https://orcid.org/0000-0003-2785-1190</orcidid><orcidid>https://orcid.org/0000-0001-5027-4868</orcidid></search><sort><creationdate>20190605</creationdate><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><author>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Clusters</topic><topic>Crystal defects</topic><topic>Deformation mechanisms</topic><topic>Deformation resistance</topic><topic>Dislocation density</topic><topic>Electrical resistance</topic><topic>Equal channel angular pressing</topic><topic>Extrusion</topic><topic>Heat treatment</topic><topic>Heating</topic><topic>Lattice vacancies</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Positron annihilation</topic><topic>Positron annihilation spectroscopy</topic><topic>Recrystallization</topic><topic>Scanning electron microscopy</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substitutional solid solutions</topic><topic>Surgical implants</topic><topic>Thermal stability</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartha, Kristína</creatorcontrib><creatorcontrib>Zháňal, Pavel</creatorcontrib><creatorcontrib>Stráský, Josef</creatorcontrib><creatorcontrib>Čížek, Jakub</creatorcontrib><creatorcontrib>Dopita, Milan</creatorcontrib><creatorcontrib>Lukáč, František</creatorcontrib><creatorcontrib>Harcuba, Petr</creatorcontrib><creatorcontrib>Hájek, Michal</creatorcontrib><creatorcontrib>Polyakova, Veronika</creatorcontrib><creatorcontrib>Semenova, Irina</creatorcontrib><creatorcontrib>Janeček, Miloš</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartha, Kristína</au><au>Zháňal, Pavel</au><au>Stráský, Josef</au><au>Čížek, Jakub</au><au>Dopita, Milan</au><au>Lukáč, František</au><au>Harcuba, Petr</au><au>Hájek, Michal</au><au>Polyakova, Veronika</au><au>Semenova, Irina</au><au>Janeček, Miloš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-06-05</date><risdate>2019</risdate><volume>788</volume><spage>881</spage><epage>890</epage><pages>881-890</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material. The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening. •Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.02.173</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2497-657X</orcidid><orcidid>https://orcid.org/0000-0001-9961-8545</orcidid><orcidid>https://orcid.org/0000-0003-2785-1190</orcidid><orcidid>https://orcid.org/0000-0001-5027-4868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-06, Vol.788, p.881-890
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2218962560
source Elsevier ScienceDirect Journals
subjects Biocompatibility
Biomedical materials
Clusters
Crystal defects
Deformation mechanisms
Deformation resistance
Dislocation density
Electrical resistance
Equal channel angular pressing
Extrusion
Heat treatment
Heating
Lattice vacancies
Microhardness
Microstructure
Positron annihilation
Positron annihilation spectroscopy
Recrystallization
Scanning electron microscopy
Solid solutions
Solution strengthening
Spectroscopy
Spectrum analysis
Substitutional solid solutions
Surgical implants
Thermal stability
Titanium alloys
Titanium base alloys
X-ray diffraction
title Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20defects%20in%20severely%20deformed%20biomedical%20Ti-6Al-7Nb%20alloy%20and%20thermal%20stability%20of%20its%20ultra-fine%20grained%20microstructure&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Bartha,%20Krist%C3%ADna&rft.date=2019-06-05&rft.volume=788&rft.spage=881&rft.epage=890&rft.pages=881-890&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.02.173&rft_dat=%3Cproquest_cross%3E2218962560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962560&rft_id=info:pmid/&rft_els_id=S0925838819306255&rfr_iscdi=true