Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure
Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2019-06, Vol.788, p.881-890 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 890 |
---|---|
container_issue | |
container_start_page | 881 |
container_title | Journal of alloys and compounds |
container_volume | 788 |
creator | Bartha, Kristína Zháňal, Pavel Stráský, Josef Čížek, Jakub Dopita, Milan Lukáč, František Harcuba, Petr Hájek, Michal Polyakova, Veronika Semenova, Irina Janeček, Miloš |
description | Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material.
The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
•Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment. |
doi_str_mv | 10.1016/j.jallcom.2019.02.173 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218962560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819306255</els_id><sourcerecordid>2218962560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</originalsourceid><addsrcrecordid>eNqFkE-L2zAQxUXZhWbT_QgLgp7t6o9l2acSQndbCO0lPQtZGm1lbCuV5IWc9qtXIbn39GDmzZuZH0JPlNSU0PbLWI96mkyYa0ZoXxNWU8k_oA3tJK-atu3v0Ib0TFQd77qP6CGlkZDi5HSD3g86Z28AW3BgcsJ-wQneIMJ0vtRCnMHiwYci3ugJH33V7qZK_hxwWRrOWC8W5z8Q59JMWQ9-8vmMg8O-pK1TjrpyfgH8GnURi2dvYkg5riavET6he6enBI833aLfz9-O--_V4dfLj_3uUJmG8FzxXkrR2Ebo8rGQnWkk06xtjbNu0Jy4wTIue2HNIEEMjkomNB-o1Fb2hBi-RZ-vuacY_q6QshrDGpeyUjFGu75loiXFJa6uy4kpglOn6Gcdz4oSdWGtRnVjrS6sFWGqsC5zX69zUF548xBVMh4WU5jFQlXZ4P-T8A8g9Iwp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962560</pqid></control><display><type>article</type><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><source>Elsevier ScienceDirect Journals</source><creator>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</creator><creatorcontrib>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</creatorcontrib><description>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material.
The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
•Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.02.173</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Biocompatibility ; Biomedical materials ; Clusters ; Crystal defects ; Deformation mechanisms ; Deformation resistance ; Dislocation density ; Electrical resistance ; Equal channel angular pressing ; Extrusion ; Heat treatment ; Heating ; Lattice vacancies ; Microhardness ; Microstructure ; Positron annihilation ; Positron annihilation spectroscopy ; Recrystallization ; Scanning electron microscopy ; Solid solutions ; Solution strengthening ; Spectroscopy ; Spectrum analysis ; Substitutional solid solutions ; Surgical implants ; Thermal stability ; Titanium alloys ; Titanium base alloys ; X-ray diffraction</subject><ispartof>Journal of alloys and compounds, 2019-06, Vol.788, p.881-890</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</citedby><cites>FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</cites><orcidid>0000-0003-2497-657X ; 0000-0001-9961-8545 ; 0000-0003-2785-1190 ; 0000-0001-5027-4868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jallcom.2019.02.173$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Bartha, Kristína</creatorcontrib><creatorcontrib>Zháňal, Pavel</creatorcontrib><creatorcontrib>Stráský, Josef</creatorcontrib><creatorcontrib>Čížek, Jakub</creatorcontrib><creatorcontrib>Dopita, Milan</creatorcontrib><creatorcontrib>Lukáč, František</creatorcontrib><creatorcontrib>Harcuba, Petr</creatorcontrib><creatorcontrib>Hájek, Michal</creatorcontrib><creatorcontrib>Polyakova, Veronika</creatorcontrib><creatorcontrib>Semenova, Irina</creatorcontrib><creatorcontrib>Janeček, Miloš</creatorcontrib><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><title>Journal of alloys and compounds</title><description>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material.
The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
•Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Clusters</subject><subject>Crystal defects</subject><subject>Deformation mechanisms</subject><subject>Deformation resistance</subject><subject>Dislocation density</subject><subject>Electrical resistance</subject><subject>Equal channel angular pressing</subject><subject>Extrusion</subject><subject>Heat treatment</subject><subject>Heating</subject><subject>Lattice vacancies</subject><subject>Microhardness</subject><subject>Microstructure</subject><subject>Positron annihilation</subject><subject>Positron annihilation spectroscopy</subject><subject>Recrystallization</subject><subject>Scanning electron microscopy</subject><subject>Solid solutions</subject><subject>Solution strengthening</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Substitutional solid solutions</subject><subject>Surgical implants</subject><subject>Thermal stability</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>X-ray diffraction</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE-L2zAQxUXZhWbT_QgLgp7t6o9l2acSQndbCO0lPQtZGm1lbCuV5IWc9qtXIbn39GDmzZuZH0JPlNSU0PbLWI96mkyYa0ZoXxNWU8k_oA3tJK-atu3v0Ib0TFQd77qP6CGlkZDi5HSD3g86Z28AW3BgcsJ-wQneIMJ0vtRCnMHiwYci3ugJH33V7qZK_hxwWRrOWC8W5z8Q59JMWQ9-8vmMg8O-pK1TjrpyfgH8GnURi2dvYkg5riavET6he6enBI833aLfz9-O--_V4dfLj_3uUJmG8FzxXkrR2Ebo8rGQnWkk06xtjbNu0Jy4wTIue2HNIEEMjkomNB-o1Fb2hBi-RZ-vuacY_q6QshrDGpeyUjFGu75loiXFJa6uy4kpglOn6Gcdz4oSdWGtRnVjrS6sFWGqsC5zX69zUF548xBVMh4WU5jFQlXZ4P-T8A8g9Iwp</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Bartha, Kristína</creator><creator>Zháňal, Pavel</creator><creator>Stráský, Josef</creator><creator>Čížek, Jakub</creator><creator>Dopita, Milan</creator><creator>Lukáč, František</creator><creator>Harcuba, Petr</creator><creator>Hájek, Michal</creator><creator>Polyakova, Veronika</creator><creator>Semenova, Irina</creator><creator>Janeček, Miloš</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-2497-657X</orcidid><orcidid>https://orcid.org/0000-0001-9961-8545</orcidid><orcidid>https://orcid.org/0000-0003-2785-1190</orcidid><orcidid>https://orcid.org/0000-0001-5027-4868</orcidid></search><sort><creationdate>20190605</creationdate><title>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</title><author>Bartha, Kristína ; Zháňal, Pavel ; Stráský, Josef ; Čížek, Jakub ; Dopita, Milan ; Lukáč, František ; Harcuba, Petr ; Hájek, Michal ; Polyakova, Veronika ; Semenova, Irina ; Janeček, Miloš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-397754d45a101578c472a266cfdfba30fbd23795dcb7e5bf1725a3b17ad7900c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Clusters</topic><topic>Crystal defects</topic><topic>Deformation mechanisms</topic><topic>Deformation resistance</topic><topic>Dislocation density</topic><topic>Electrical resistance</topic><topic>Equal channel angular pressing</topic><topic>Extrusion</topic><topic>Heat treatment</topic><topic>Heating</topic><topic>Lattice vacancies</topic><topic>Microhardness</topic><topic>Microstructure</topic><topic>Positron annihilation</topic><topic>Positron annihilation spectroscopy</topic><topic>Recrystallization</topic><topic>Scanning electron microscopy</topic><topic>Solid solutions</topic><topic>Solution strengthening</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Substitutional solid solutions</topic><topic>Surgical implants</topic><topic>Thermal stability</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartha, Kristína</creatorcontrib><creatorcontrib>Zháňal, Pavel</creatorcontrib><creatorcontrib>Stráský, Josef</creatorcontrib><creatorcontrib>Čížek, Jakub</creatorcontrib><creatorcontrib>Dopita, Milan</creatorcontrib><creatorcontrib>Lukáč, František</creatorcontrib><creatorcontrib>Harcuba, Petr</creatorcontrib><creatorcontrib>Hájek, Michal</creatorcontrib><creatorcontrib>Polyakova, Veronika</creatorcontrib><creatorcontrib>Semenova, Irina</creatorcontrib><creatorcontrib>Janeček, Miloš</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartha, Kristína</au><au>Zháňal, Pavel</au><au>Stráský, Josef</au><au>Čížek, Jakub</au><au>Dopita, Milan</au><au>Lukáč, František</au><au>Harcuba, Petr</au><au>Hájek, Michal</au><au>Polyakova, Veronika</au><au>Semenova, Irina</au><au>Janeček, Miloš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-06-05</date><risdate>2019</risdate><volume>788</volume><spage>881</spage><epage>890</epage><pages>881-890</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Biomedical Ti-6Al-7Nb alloy was prepared by a dedicated thermal treatment followed by equal-channel angular pressing (ECAP) and extrusion. Ultra-fine grained duplex microstructure consisting of deformed primary α-grains and fragmented α + β region was achieved. Microstructural changes during heating with the rate of 5 °C/min were studied by in-situ electrical resistance. Microstructure after deformation and also after subsequent heating was thoroughly characterized by scanning electron microscopy, X-ray diffraction, and positron annihilation spectroscopy (PAS). X-ray diffraction and positron annihilation spectroscopy proved a very high dislocation density and the presence of high concentration of vacancy clusters in deformed material.
The ultra-fine grained microstructure of Ti-6Al-7Nb alloy is stable up to 440 °C, while upon heating to 550 °C and to 660 °C, the dislocation density decreases and vacancy clusters disappear. Enhanced microhardness can be achieved by ECAP followed by aging at 500 °C. Upon heating to 660 °C, the microhardness decreases due to ongoing recovery and recrystallization. Coincidence Doppler broadening (CDB), a special method of PAS, proved that dislocation cores are preferentially occupied by Al atoms that are known to cause substitutional solid solution strengthening.
•Recovery and recrystallization processes of the UFG Ti-6Al-7Nb alloy were studied.•The thermally activated processes were proved by several experimental methods.•Coincidence Doppler broadening proved substitutional solid solution strengthening by Al.•Enhanced microhardness can be achieved by ECAP followed by annealing treatment.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.02.173</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2497-657X</orcidid><orcidid>https://orcid.org/0000-0001-9961-8545</orcidid><orcidid>https://orcid.org/0000-0003-2785-1190</orcidid><orcidid>https://orcid.org/0000-0001-5027-4868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-06, Vol.788, p.881-890 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2218962560 |
source | Elsevier ScienceDirect Journals |
subjects | Biocompatibility Biomedical materials Clusters Crystal defects Deformation mechanisms Deformation resistance Dislocation density Electrical resistance Equal channel angular pressing Extrusion Heat treatment Heating Lattice vacancies Microhardness Microstructure Positron annihilation Positron annihilation spectroscopy Recrystallization Scanning electron microscopy Solid solutions Solution strengthening Spectroscopy Spectrum analysis Substitutional solid solutions Surgical implants Thermal stability Titanium alloys Titanium base alloys X-ray diffraction |
title | Lattice defects in severely deformed biomedical Ti-6Al-7Nb alloy and thermal stability of its ultra-fine grained microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20defects%20in%20severely%20deformed%20biomedical%20Ti-6Al-7Nb%20alloy%20and%20thermal%20stability%20of%20its%20ultra-fine%20grained%20microstructure&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Bartha,%20Krist%C3%ADna&rft.date=2019-06-05&rft.volume=788&rft.spage=881&rft.epage=890&rft.pages=881-890&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.02.173&rft_dat=%3Cproquest_cross%3E2218962560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962560&rft_id=info:pmid/&rft_els_id=S0925838819306255&rfr_iscdi=true |