Informative trees by visual pruning
•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world...
Gespeichert in:
Veröffentlicht in: | Expert systems with applications 2019-08, Vol.127, p.228-240 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | |
container_start_page | 228 |
container_title | Expert systems with applications |
container_volume | 127 |
creator | Iorio, Carmela Aria, Massimo D’Ambrosio, Antonio Siciliano, Roberta |
description | •A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets.
The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning. |
doi_str_mv | 10.1016/j.eswa.2019.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218962411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417419301800</els_id><sourcerecordid>2218962411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6widZ0wEztxLLFBFY9KldjA2nKcMXLUJsVOgvr3pCprVndzz8zVYeweIUPA8qHNKP6YLAdUGfAMsLpgC6wkT0up-CVbgCpkKlCKa3YTYwuAEkAu2GrTuT7szeAnSoZAFJP6mEw-jmaXHMLY-e7rll05s4t095dL9vny_LF-S7fvr5v10za1XOZDWggjAIQpnKOGE-fCclNLbJBbUq5AYQVZJata5YUqSiedwQJUrVRVC1fyJVud7x5C_z1SHHTbj6GbX-o8x0qVuUCcW_m5ZUMfYyCnD8HvTThqBH2SoVt9kqFPMjRwPcuYocczRPP-yVPQ0XrqLDU-kB100_v_8F8z_mbJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962411</pqid></control><display><type>article</type><title>Informative trees by visual pruning</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</creator><creatorcontrib>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</creatorcontrib><description>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets.
The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2019.03.018</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>CART ; Classification ; Cost-complexity pruning ; Decision trees ; Impurity proportional reduction ; Pruning ; Regression analysis ; Supervised statistical learning ; Visualization</subject><ispartof>Expert systems with applications, 2019-08, Vol.127, p.228-240</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</citedby><cites>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</cites><orcidid>0000-0002-8517-9411 ; 0000-0002-1905-037X ; 0000-0001-5622-4124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2019.03.018$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Aria, Massimo</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><title>Informative trees by visual pruning</title><title>Expert systems with applications</title><description>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets.
The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</description><subject>CART</subject><subject>Classification</subject><subject>Cost-complexity pruning</subject><subject>Decision trees</subject><subject>Impurity proportional reduction</subject><subject>Pruning</subject><subject>Regression analysis</subject><subject>Supervised statistical learning</subject><subject>Visualization</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6widZ0wEztxLLFBFY9KldjA2nKcMXLUJsVOgvr3pCprVndzz8zVYeweIUPA8qHNKP6YLAdUGfAMsLpgC6wkT0up-CVbgCpkKlCKa3YTYwuAEkAu2GrTuT7szeAnSoZAFJP6mEw-jmaXHMLY-e7rll05s4t095dL9vny_LF-S7fvr5v10za1XOZDWggjAIQpnKOGE-fCclNLbJBbUq5AYQVZJata5YUqSiedwQJUrVRVC1fyJVud7x5C_z1SHHTbj6GbX-o8x0qVuUCcW_m5ZUMfYyCnD8HvTThqBH2SoVt9kqFPMjRwPcuYocczRPP-yVPQ0XrqLDU-kB100_v_8F8z_mbJ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Iorio, Carmela</creator><creator>Aria, Massimo</creator><creator>D’Ambrosio, Antonio</creator><creator>Siciliano, Roberta</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8517-9411</orcidid><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-5622-4124</orcidid></search><sort><creationdate>20190801</creationdate><title>Informative trees by visual pruning</title><author>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CART</topic><topic>Classification</topic><topic>Cost-complexity pruning</topic><topic>Decision trees</topic><topic>Impurity proportional reduction</topic><topic>Pruning</topic><topic>Regression analysis</topic><topic>Supervised statistical learning</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Aria, Massimo</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iorio, Carmela</au><au>Aria, Massimo</au><au>D’Ambrosio, Antonio</au><au>Siciliano, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informative trees by visual pruning</atitle><jtitle>Expert systems with applications</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>127</volume><spage>228</spage><epage>240</epage><pages>228-240</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets.
The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2019.03.018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8517-9411</orcidid><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-5622-4124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4174 |
ispartof | Expert systems with applications, 2019-08, Vol.127, p.228-240 |
issn | 0957-4174 1873-6793 |
language | eng |
recordid | cdi_proquest_journals_2218962411 |
source | Elsevier ScienceDirect Journals Complete |
subjects | CART Classification Cost-complexity pruning Decision trees Impurity proportional reduction Pruning Regression analysis Supervised statistical learning Visualization |
title | Informative trees by visual pruning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informative%20trees%20by%20visual%20pruning&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Iorio,%20Carmela&rft.date=2019-08-01&rft.volume=127&rft.spage=228&rft.epage=240&rft.pages=228-240&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2019.03.018&rft_dat=%3Cproquest_cross%3E2218962411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962411&rft_id=info:pmid/&rft_els_id=S0957417419301800&rfr_iscdi=true |