Informative trees by visual pruning

•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications 2019-08, Vol.127, p.228-240
Hauptverfasser: Iorio, Carmela, Aria, Massimo, D’Ambrosio, Antonio, Siciliano, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue
container_start_page 228
container_title Expert systems with applications
container_volume 127
creator Iorio, Carmela
Aria, Massimo
D’Ambrosio, Antonio
Siciliano, Roberta
description •A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets. The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.
doi_str_mv 10.1016/j.eswa.2019.03.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218962411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417419301800</els_id><sourcerecordid>2218962411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6widZ0wEztxLLFBFY9KldjA2nKcMXLUJsVOgvr3pCprVndzz8zVYeweIUPA8qHNKP6YLAdUGfAMsLpgC6wkT0up-CVbgCpkKlCKa3YTYwuAEkAu2GrTuT7szeAnSoZAFJP6mEw-jmaXHMLY-e7rll05s4t095dL9vny_LF-S7fvr5v10za1XOZDWggjAIQpnKOGE-fCclNLbJBbUq5AYQVZJata5YUqSiedwQJUrVRVC1fyJVud7x5C_z1SHHTbj6GbX-o8x0qVuUCcW_m5ZUMfYyCnD8HvTThqBH2SoVt9kqFPMjRwPcuYocczRPP-yVPQ0XrqLDU-kB100_v_8F8z_mbJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962411</pqid></control><display><type>article</type><title>Informative trees by visual pruning</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</creator><creatorcontrib>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</creatorcontrib><description>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets. The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2019.03.018</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>CART ; Classification ; Cost-complexity pruning ; Decision trees ; Impurity proportional reduction ; Pruning ; Regression analysis ; Supervised statistical learning ; Visualization</subject><ispartof>Expert systems with applications, 2019-08, Vol.127, p.228-240</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</citedby><cites>FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</cites><orcidid>0000-0002-8517-9411 ; 0000-0002-1905-037X ; 0000-0001-5622-4124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.eswa.2019.03.018$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Aria, Massimo</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><title>Informative trees by visual pruning</title><title>Expert systems with applications</title><description>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets. The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</description><subject>CART</subject><subject>Classification</subject><subject>Cost-complexity pruning</subject><subject>Decision trees</subject><subject>Impurity proportional reduction</subject><subject>Pruning</subject><subject>Regression analysis</subject><subject>Supervised statistical learning</subject><subject>Visualization</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6widZ0wEztxLLFBFY9KldjA2nKcMXLUJsVOgvr3pCprVndzz8zVYeweIUPA8qHNKP6YLAdUGfAMsLpgC6wkT0up-CVbgCpkKlCKa3YTYwuAEkAu2GrTuT7szeAnSoZAFJP6mEw-jmaXHMLY-e7rll05s4t095dL9vny_LF-S7fvr5v10za1XOZDWggjAIQpnKOGE-fCclNLbJBbUq5AYQVZJata5YUqSiedwQJUrVRVC1fyJVud7x5C_z1SHHTbj6GbX-o8x0qVuUCcW_m5ZUMfYyCnD8HvTThqBH2SoVt9kqFPMjRwPcuYocczRPP-yVPQ0XrqLDU-kB100_v_8F8z_mbJ</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Iorio, Carmela</creator><creator>Aria, Massimo</creator><creator>D’Ambrosio, Antonio</creator><creator>Siciliano, Roberta</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8517-9411</orcidid><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-5622-4124</orcidid></search><sort><creationdate>20190801</creationdate><title>Informative trees by visual pruning</title><author>Iorio, Carmela ; Aria, Massimo ; D’Ambrosio, Antonio ; Siciliano, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-54a4004a5ffed3e334c3ab71d13ce9f514c4ec978b925956f7fa1509b998b4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CART</topic><topic>Classification</topic><topic>Cost-complexity pruning</topic><topic>Decision trees</topic><topic>Impurity proportional reduction</topic><topic>Pruning</topic><topic>Regression analysis</topic><topic>Supervised statistical learning</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iorio, Carmela</creatorcontrib><creatorcontrib>Aria, Massimo</creatorcontrib><creatorcontrib>D’Ambrosio, Antonio</creatorcontrib><creatorcontrib>Siciliano, Roberta</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iorio, Carmela</au><au>Aria, Massimo</au><au>D’Ambrosio, Antonio</au><au>Siciliano, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Informative trees by visual pruning</atitle><jtitle>Expert systems with applications</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>127</volume><spage>228</spage><epage>240</epage><pages>228-240</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A one-step procedure of pruning and decision tree selection is provided.•We define a new way to represent the tree structure by a dendrogram-like output.•Our approach can be used to build up both classification and regression trees.•We show the performance of the proposed approach using real world data sets. The aim of this study is to provide visual pruning and decision tree selection for classification and regression trees. Specifically, we introduce an unedited tree graph to be made informative for recursive tree data partitioning. A decision tree is visually selected through a dendrogram-like procedure or through automatic tree-size selection. Our proposal is a one-step procedure whereby the most predictive paths are visualized. This method appears to be useful in all real world cases where tree-path interpretation is crucial. Experimental evaluations using real world data sets are presented. The performance was very similar to Classification and Regression Trees (CART) benchmarking methodology, showing that our method is a valid alternative to the well-known method of cost-complexity pruning.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2019.03.018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8517-9411</orcidid><orcidid>https://orcid.org/0000-0002-1905-037X</orcidid><orcidid>https://orcid.org/0000-0001-5622-4124</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2019-08, Vol.127, p.228-240
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2218962411
source Elsevier ScienceDirect Journals Complete
subjects CART
Classification
Cost-complexity pruning
Decision trees
Impurity proportional reduction
Pruning
Regression analysis
Supervised statistical learning
Visualization
title Informative trees by visual pruning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A46%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Informative%20trees%20by%20visual%20pruning&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Iorio,%20Carmela&rft.date=2019-08-01&rft.volume=127&rft.spage=228&rft.epage=240&rft.pages=228-240&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2019.03.018&rft_dat=%3Cproquest_cross%3E2218962411%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962411&rft_id=info:pmid/&rft_els_id=S0957417419301800&rfr_iscdi=true