Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system

This work proposes an adaptive Multi-Input and Single-Output fuzzy controller which is designed in a supervisory manner for a multi-agent system. This paper mainly aims to control the frequency oscillation of each agent and minimize the production cost of the whole interconnected system. In the prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-04, Vol.173, p.554-568
Hauptverfasser: Yu, Dongmin, Zhu, Haoming, Han, Wenqi, Holburn, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 568
container_issue
container_start_page 554
container_title Energy (Oxford)
container_volume 173
creator Yu, Dongmin
Zhu, Haoming
Han, Wenqi
Holburn, Daniel
description This work proposes an adaptive Multi-Input and Single-Output fuzzy controller which is designed in a supervisory manner for a multi-agent system. This paper mainly aims to control the frequency oscillation of each agent and minimize the production cost of the whole interconnected system. In the proposed controller, the load frequency control and management controller loops are integrated into the designing phase. In many parallel works, designing a load frequency controller and managing unit have been carried out separately which leads to disturbance in both outputs. In the present work, the disruption is eliminated by the implementation of the proposed controlling method. To improve the performance of the proposed controller, the key parameters of the controller are tuned using the modified particle swarm optimization algorithm. The designed control system namely “distributed control method” is applied for several independent units (agents). The controller parameters are tuned in a supervisory manner for the considered multi-agent system, where each agent is connected to the adjacent agents. A wide range of operation points is regarded in the designing phase to adjust the parameters in a way that the controller can effectively control the system in the whole of this range. •Designing multi-agent based MISO fuzzy controller for management of microgrid DGs.•Regarding production cost and LFC in micro-grid as objective function.•Choosing a proper method for optimization with analysis of different methods.
doi_str_mv 10.1016/j.energy.2019.02.094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218962307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219302890</els_id><sourcerecordid>2218962307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-eb20e41c96381b1cda4c95b8b0d8d43a79dab8f77b7c367245ddd6d3b4b1fdcc3</originalsourceid><addsrcrecordid>eNp9kMtqHDEQRUVwIGMnf5CFIOvu0asf2gTCOI4NBnvhZCv0qB40dEuOpHboZf48MpO1V0UVt-6tOgh9pqSlhPb7UwsB0nFrGaGyJawlUrxDOzoOvOmHsbtAO8J70nRCsA_oMucTIaQbpdyhv9db0Iu3eFnn4rE-QiiN0RkcXnSo7VIHWAeH56gdnhL8XiHYDdsYSoozjhN-_LW_WWHGFuZ5j__4Ki5rMj7AHh9uH7EPWK8lhrjENeMaluIxeYfzlgssH9H7Sc8ZPv2vV-jnzfenw21z__Dj7vDtvrGCy9KAYQQEtbLnIzXUOi2s7MxoiBud4HqQTptxGgYzWN4PTHTOud5xIwydnLX8Cn05-z6nWH_IRZ3imkKNVIzRUfaMk6GqxFlVj8w5waSek1902hQl6hW2OqkzbPUKWxGmKuy69vW8BvWDFw9JZesrJ3A-gS3KRf-2wT8hJ4yf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218962307</pqid></control><display><type>article</type><title>Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yu, Dongmin ; Zhu, Haoming ; Han, Wenqi ; Holburn, Daniel</creator><creatorcontrib>Yu, Dongmin ; Zhu, Haoming ; Han, Wenqi ; Holburn, Daniel</creatorcontrib><description>This work proposes an adaptive Multi-Input and Single-Output fuzzy controller which is designed in a supervisory manner for a multi-agent system. This paper mainly aims to control the frequency oscillation of each agent and minimize the production cost of the whole interconnected system. In the proposed controller, the load frequency control and management controller loops are integrated into the designing phase. In many parallel works, designing a load frequency controller and managing unit have been carried out separately which leads to disturbance in both outputs. In the present work, the disruption is eliminated by the implementation of the proposed controlling method. To improve the performance of the proposed controller, the key parameters of the controller are tuned using the modified particle swarm optimization algorithm. The designed control system namely “distributed control method” is applied for several independent units (agents). The controller parameters are tuned in a supervisory manner for the considered multi-agent system, where each agent is connected to the adjacent agents. A wide range of operation points is regarded in the designing phase to adjust the parameters in a way that the controller can effectively control the system in the whole of this range. •Designing multi-agent based MISO fuzzy controller for management of microgrid DGs.•Regarding production cost and LFC in micro-grid as objective function.•Choosing a proper method for optimization with analysis of different methods.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.02.094</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Adaptive systems ; Algorithms ; Control systems design ; Controllers ; Disruption ; Distributed control ; Distributed generation ; Frequency control ; Fuel cells ; Fuel technology ; Fuzzy control ; Fuzzy systems ; Microgrid management ; MISO fuzzy controller ; MPSO ; Multi agent system ; Multiagent systems ; Optimal controller ; Parameter modification ; Particle swarm optimization ; Performance enhancement ; Photovoltaic cells ; Production costs ; Solar cells ; Turbines ; Wind power ; Wind turbines</subject><ispartof>Energy (Oxford), 2019-04, Vol.173, p.554-568</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-eb20e41c96381b1cda4c95b8b0d8d43a79dab8f77b7c367245ddd6d3b4b1fdcc3</citedby><cites>FETCH-LOGICAL-c439t-eb20e41c96381b1cda4c95b8b0d8d43a79dab8f77b7c367245ddd6d3b4b1fdcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.02.094$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Yu, Dongmin</creatorcontrib><creatorcontrib>Zhu, Haoming</creatorcontrib><creatorcontrib>Han, Wenqi</creatorcontrib><creatorcontrib>Holburn, Daniel</creatorcontrib><title>Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system</title><title>Energy (Oxford)</title><description>This work proposes an adaptive Multi-Input and Single-Output fuzzy controller which is designed in a supervisory manner for a multi-agent system. This paper mainly aims to control the frequency oscillation of each agent and minimize the production cost of the whole interconnected system. In the proposed controller, the load frequency control and management controller loops are integrated into the designing phase. In many parallel works, designing a load frequency controller and managing unit have been carried out separately which leads to disturbance in both outputs. In the present work, the disruption is eliminated by the implementation of the proposed controlling method. To improve the performance of the proposed controller, the key parameters of the controller are tuned using the modified particle swarm optimization algorithm. The designed control system namely “distributed control method” is applied for several independent units (agents). The controller parameters are tuned in a supervisory manner for the considered multi-agent system, where each agent is connected to the adjacent agents. A wide range of operation points is regarded in the designing phase to adjust the parameters in a way that the controller can effectively control the system in the whole of this range. •Designing multi-agent based MISO fuzzy controller for management of microgrid DGs.•Regarding production cost and LFC in micro-grid as objective function.•Choosing a proper method for optimization with analysis of different methods.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Disruption</subject><subject>Distributed control</subject><subject>Distributed generation</subject><subject>Frequency control</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Microgrid management</subject><subject>MISO fuzzy controller</subject><subject>MPSO</subject><subject>Multi agent system</subject><subject>Multiagent systems</subject><subject>Optimal controller</subject><subject>Parameter modification</subject><subject>Particle swarm optimization</subject><subject>Performance enhancement</subject><subject>Photovoltaic cells</subject><subject>Production costs</subject><subject>Solar cells</subject><subject>Turbines</subject><subject>Wind power</subject><subject>Wind turbines</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqHDEQRUVwIGMnf5CFIOvu0asf2gTCOI4NBnvhZCv0qB40dEuOpHboZf48MpO1V0UVt-6tOgh9pqSlhPb7UwsB0nFrGaGyJawlUrxDOzoOvOmHsbtAO8J70nRCsA_oMucTIaQbpdyhv9db0Iu3eFnn4rE-QiiN0RkcXnSo7VIHWAeH56gdnhL8XiHYDdsYSoozjhN-_LW_WWHGFuZ5j__4Ki5rMj7AHh9uH7EPWK8lhrjENeMaluIxeYfzlgssH9H7Sc8ZPv2vV-jnzfenw21z__Dj7vDtvrGCy9KAYQQEtbLnIzXUOi2s7MxoiBud4HqQTptxGgYzWN4PTHTOud5xIwydnLX8Cn05-z6nWH_IRZ3imkKNVIzRUfaMk6GqxFlVj8w5waSek1902hQl6hW2OqkzbPUKWxGmKuy69vW8BvWDFw9JZesrJ3A-gS3KRf-2wT8hJ4yf</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Yu, Dongmin</creator><creator>Zhu, Haoming</creator><creator>Han, Wenqi</creator><creator>Holburn, Daniel</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20190415</creationdate><title>Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system</title><author>Yu, Dongmin ; Zhu, Haoming ; Han, Wenqi ; Holburn, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-eb20e41c96381b1cda4c95b8b0d8d43a79dab8f77b7c367245ddd6d3b4b1fdcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Disruption</topic><topic>Distributed control</topic><topic>Distributed generation</topic><topic>Frequency control</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Microgrid management</topic><topic>MISO fuzzy controller</topic><topic>MPSO</topic><topic>Multi agent system</topic><topic>Multiagent systems</topic><topic>Optimal controller</topic><topic>Parameter modification</topic><topic>Particle swarm optimization</topic><topic>Performance enhancement</topic><topic>Photovoltaic cells</topic><topic>Production costs</topic><topic>Solar cells</topic><topic>Turbines</topic><topic>Wind power</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dongmin</creatorcontrib><creatorcontrib>Zhu, Haoming</creatorcontrib><creatorcontrib>Han, Wenqi</creatorcontrib><creatorcontrib>Holburn, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dongmin</au><au>Zhu, Haoming</au><au>Han, Wenqi</au><au>Holburn, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>173</volume><spage>554</spage><epage>568</epage><pages>554-568</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>This work proposes an adaptive Multi-Input and Single-Output fuzzy controller which is designed in a supervisory manner for a multi-agent system. This paper mainly aims to control the frequency oscillation of each agent and minimize the production cost of the whole interconnected system. In the proposed controller, the load frequency control and management controller loops are integrated into the designing phase. In many parallel works, designing a load frequency controller and managing unit have been carried out separately which leads to disturbance in both outputs. In the present work, the disruption is eliminated by the implementation of the proposed controlling method. To improve the performance of the proposed controller, the key parameters of the controller are tuned using the modified particle swarm optimization algorithm. The designed control system namely “distributed control method” is applied for several independent units (agents). The controller parameters are tuned in a supervisory manner for the considered multi-agent system, where each agent is connected to the adjacent agents. A wide range of operation points is regarded in the designing phase to adjust the parameters in a way that the controller can effectively control the system in the whole of this range. •Designing multi-agent based MISO fuzzy controller for management of microgrid DGs.•Regarding production cost and LFC in micro-grid as objective function.•Choosing a proper method for optimization with analysis of different methods.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.02.094</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-04, Vol.173, p.554-568
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2218962307
source ScienceDirect Journals (5 years ago - present)
subjects Adaptive systems
Algorithms
Control systems design
Controllers
Disruption
Distributed control
Distributed generation
Frequency control
Fuel cells
Fuel technology
Fuzzy control
Fuzzy systems
Microgrid management
MISO fuzzy controller
MPSO
Multi agent system
Multiagent systems
Optimal controller
Parameter modification
Particle swarm optimization
Performance enhancement
Photovoltaic cells
Production costs
Solar cells
Turbines
Wind power
Wind turbines
title Dynamic multi agent-based management and load frequency control of PV/Fuel cell/ wind turbine/ CHP in autonomous microgrid system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20multi%20agent-based%20management%20and%20load%20frequency%20control%20of%20PV/Fuel%20cell/%20wind%20turbine/%20CHP%20in%20autonomous%20microgrid%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Yu,%20Dongmin&rft.date=2019-04-15&rft.volume=173&rft.spage=554&rft.epage=568&rft.pages=554-568&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.02.094&rft_dat=%3Cproquest_cross%3E2218962307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218962307&rft_id=info:pmid/&rft_els_id=S0360544219302890&rfr_iscdi=true