OMOTENASHI trajectory analysis and design: Landing phase
OMOTENASHI is a JAXA 6U cubesat that aims to perform a semi-hard landing on the Moon's surface after being deployed into a lunar fly-by orbit by the American Space Launch System, Exploration Mission-1. OMOTENASHI is a challenging mission – performing a semi-hard landing with a cubesat. One of t...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 2019-03, Vol.156, p.113-124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 113 |
container_title | Acta astronautica |
container_volume | 156 |
creator | Hernando-Ayuso, Javier Campagnola, Stefano Yamaguchi, Tomohiro Ozawa, Yusuke Ikenaga, Toshinori |
description | OMOTENASHI is a JAXA 6U cubesat that aims to perform a semi-hard landing on the Moon's surface after being deployed into a lunar fly-by orbit by the American Space Launch System, Exploration Mission-1. OMOTENASHI is a challenging mission – performing a semi-hard landing with a cubesat. One of the main challenges comes from the trajectory, which is characterized by a single deceleration maneuver instead of multiple ones for orbit insertion, descent, hovering and landing. After the deceleration maneuver, there is no time to correct for navigation and execution errors so the robustness of the trajectory is key. This paper presents the analysis and design of the OMOTENASHI landing phase. It studies the performance of the subsystems involved in the landing and proposes a deceleration maneuver to set to zero the vertical velocity at burn-out with a specified height over the Moon's surface, followed by a free-fall. In order to assess the robustness of the trajectory, it considers uncertainties in the state vector and deceleration maneuver execution. The flight path angle at lunar arrival has a great impact on the landing success rate, which imposes a very strong constraint on the design of the transfer phase trajectory. Under the current subsystems design, the most critical factors in the landing success rate are the maneuver orientation and thrust duration. Results suggest accuracy requirements for the landing devices, solid rocket motor and attitude accuracy, as well as for the transfer phase trajectory design. Finally, the navigation and maneuver execution errors may cause OMOTENASHI to prematurely impact against the surface during the solid rocket motor burn. This calls for a trade-off between the targeted final height and the maximum landing velocity.
•OMOTENASHI: a lunar semi-hard lander the size of a cubesat.•Earth-Moon transfer and landing trajectory design is highly coupled.•Error robust landing design is key.•Simplified model gives designer a first guess of sensitivities and critical errors.•High-fidelity model with real lunar local topography provides finer detail. |
doi_str_mv | 10.1016/j.actaastro.2018.10.017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218957619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576518301139</els_id><sourcerecordid>2218957619</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-5438f1d56ead040647dbbaf510ed315897aacc3040ffbe6f5db0009cb702cbf83</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKe_wYLXrSdt0yTejTG3wXQXzuuQ5mOmzHYmnbB_b0rFW6_O98t5H4TuMWQYcPXYZFL1Uobed1kOmMVuBpheoAlmlKc5FHCJJgC8TAmtyDW6CaEBAJozPkFs-7LdLV5nb6t10nvZGNV3_pzIVh7OwYWY6ESb4PbtU7KJhWv3yfFDBnOLrqw8BHP3G6fo_Xmxm6_SzXa5ns82qSpJ0aekLJjFmlRGaiihKqmua2kJBqMLTBinUipVxJG1taks0XX8jauaQq5qy4opehh1j777OpnQi6Y7-fheEHmOGY-eMI9bdNxSvgvBGyuO3n1KfxYYxIBJNOIPkxgwDYOIKV7OxksTTXw740VQzrTKaOcjDKE796_GDzwcdDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218957619</pqid></control><display><type>article</type><title>OMOTENASHI trajectory analysis and design: Landing phase</title><source>Elsevier ScienceDirect Journals</source><creator>Hernando-Ayuso, Javier ; Campagnola, Stefano ; Yamaguchi, Tomohiro ; Ozawa, Yusuke ; Ikenaga, Toshinori</creator><creatorcontrib>Hernando-Ayuso, Javier ; Campagnola, Stefano ; Yamaguchi, Tomohiro ; Ozawa, Yusuke ; Ikenaga, Toshinori</creatorcontrib><description>OMOTENASHI is a JAXA 6U cubesat that aims to perform a semi-hard landing on the Moon's surface after being deployed into a lunar fly-by orbit by the American Space Launch System, Exploration Mission-1. OMOTENASHI is a challenging mission – performing a semi-hard landing with a cubesat. One of the main challenges comes from the trajectory, which is characterized by a single deceleration maneuver instead of multiple ones for orbit insertion, descent, hovering and landing. After the deceleration maneuver, there is no time to correct for navigation and execution errors so the robustness of the trajectory is key. This paper presents the analysis and design of the OMOTENASHI landing phase. It studies the performance of the subsystems involved in the landing and proposes a deceleration maneuver to set to zero the vertical velocity at burn-out with a specified height over the Moon's surface, followed by a free-fall. In order to assess the robustness of the trajectory, it considers uncertainties in the state vector and deceleration maneuver execution. The flight path angle at lunar arrival has a great impact on the landing success rate, which imposes a very strong constraint on the design of the transfer phase trajectory. Under the current subsystems design, the most critical factors in the landing success rate are the maneuver orientation and thrust duration. Results suggest accuracy requirements for the landing devices, solid rocket motor and attitude accuracy, as well as for the transfer phase trajectory design. Finally, the navigation and maneuver execution errors may cause OMOTENASHI to prematurely impact against the surface during the solid rocket motor burn. This calls for a trade-off between the targeted final height and the maximum landing velocity.
•OMOTENASHI: a lunar semi-hard lander the size of a cubesat.•Earth-Moon transfer and landing trajectory design is highly coupled.•Error robust landing design is key.•Simplified model gives designer a first guess of sensitivities and critical errors.•High-fidelity model with real lunar local topography provides finer detail.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2018.10.017</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Booster rockets ; Cubesat ; Deceleration ; Design ; Design analysis ; Hard landing ; Hovering ; Lunar landing ; Lunar surface ; Moon ; Moon landing ; Navigation ; OMOTENASHI ; Orbit insertion ; Robust design ; Robustness ; Rocket engines ; Sensitivity analysis ; Solid propellant rocket engines ; Spacecraft ; State vectors ; Subsystems ; Trajectory analysis ; Uncertainty quantification ; Vertical velocities</subject><ispartof>Acta astronautica, 2019-03, Vol.156, p.113-124</ispartof><rights>2018 IAA</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-5438f1d56ead040647dbbaf510ed315897aacc3040ffbe6f5db0009cb702cbf83</citedby><cites>FETCH-LOGICAL-c453t-5438f1d56ead040647dbbaf510ed315897aacc3040ffbe6f5db0009cb702cbf83</cites><orcidid>0000-0002-5237-0439 ; 0000-0002-0247-5566 ; 0000-0002-9548-8963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0094576518301139$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hernando-Ayuso, Javier</creatorcontrib><creatorcontrib>Campagnola, Stefano</creatorcontrib><creatorcontrib>Yamaguchi, Tomohiro</creatorcontrib><creatorcontrib>Ozawa, Yusuke</creatorcontrib><creatorcontrib>Ikenaga, Toshinori</creatorcontrib><title>OMOTENASHI trajectory analysis and design: Landing phase</title><title>Acta astronautica</title><description>OMOTENASHI is a JAXA 6U cubesat that aims to perform a semi-hard landing on the Moon's surface after being deployed into a lunar fly-by orbit by the American Space Launch System, Exploration Mission-1. OMOTENASHI is a challenging mission – performing a semi-hard landing with a cubesat. One of the main challenges comes from the trajectory, which is characterized by a single deceleration maneuver instead of multiple ones for orbit insertion, descent, hovering and landing. After the deceleration maneuver, there is no time to correct for navigation and execution errors so the robustness of the trajectory is key. This paper presents the analysis and design of the OMOTENASHI landing phase. It studies the performance of the subsystems involved in the landing and proposes a deceleration maneuver to set to zero the vertical velocity at burn-out with a specified height over the Moon's surface, followed by a free-fall. In order to assess the robustness of the trajectory, it considers uncertainties in the state vector and deceleration maneuver execution. The flight path angle at lunar arrival has a great impact on the landing success rate, which imposes a very strong constraint on the design of the transfer phase trajectory. Under the current subsystems design, the most critical factors in the landing success rate are the maneuver orientation and thrust duration. Results suggest accuracy requirements for the landing devices, solid rocket motor and attitude accuracy, as well as for the transfer phase trajectory design. Finally, the navigation and maneuver execution errors may cause OMOTENASHI to prematurely impact against the surface during the solid rocket motor burn. This calls for a trade-off between the targeted final height and the maximum landing velocity.
•OMOTENASHI: a lunar semi-hard lander the size of a cubesat.•Earth-Moon transfer and landing trajectory design is highly coupled.•Error robust landing design is key.•Simplified model gives designer a first guess of sensitivities and critical errors.•High-fidelity model with real lunar local topography provides finer detail.</description><subject>Booster rockets</subject><subject>Cubesat</subject><subject>Deceleration</subject><subject>Design</subject><subject>Design analysis</subject><subject>Hard landing</subject><subject>Hovering</subject><subject>Lunar landing</subject><subject>Lunar surface</subject><subject>Moon</subject><subject>Moon landing</subject><subject>Navigation</subject><subject>OMOTENASHI</subject><subject>Orbit insertion</subject><subject>Robust design</subject><subject>Robustness</subject><subject>Rocket engines</subject><subject>Sensitivity analysis</subject><subject>Solid propellant rocket engines</subject><subject>Spacecraft</subject><subject>State vectors</subject><subject>Subsystems</subject><subject>Trajectory analysis</subject><subject>Uncertainty quantification</subject><subject>Vertical velocities</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKe_wYLXrSdt0yTejTG3wXQXzuuQ5mOmzHYmnbB_b0rFW6_O98t5H4TuMWQYcPXYZFL1Uobed1kOmMVuBpheoAlmlKc5FHCJJgC8TAmtyDW6CaEBAJozPkFs-7LdLV5nb6t10nvZGNV3_pzIVh7OwYWY6ESb4PbtU7KJhWv3yfFDBnOLrqw8BHP3G6fo_Xmxm6_SzXa5ns82qSpJ0aekLJjFmlRGaiihKqmua2kJBqMLTBinUipVxJG1taks0XX8jauaQq5qy4opehh1j777OpnQi6Y7-fheEHmOGY-eMI9bdNxSvgvBGyuO3n1KfxYYxIBJNOIPkxgwDYOIKV7OxksTTXw740VQzrTKaOcjDKE796_GDzwcdDM</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Hernando-Ayuso, Javier</creator><creator>Campagnola, Stefano</creator><creator>Yamaguchi, Tomohiro</creator><creator>Ozawa, Yusuke</creator><creator>Ikenaga, Toshinori</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5237-0439</orcidid><orcidid>https://orcid.org/0000-0002-0247-5566</orcidid><orcidid>https://orcid.org/0000-0002-9548-8963</orcidid></search><sort><creationdate>201903</creationdate><title>OMOTENASHI trajectory analysis and design: Landing phase</title><author>Hernando-Ayuso, Javier ; Campagnola, Stefano ; Yamaguchi, Tomohiro ; Ozawa, Yusuke ; Ikenaga, Toshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-5438f1d56ead040647dbbaf510ed315897aacc3040ffbe6f5db0009cb702cbf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Booster rockets</topic><topic>Cubesat</topic><topic>Deceleration</topic><topic>Design</topic><topic>Design analysis</topic><topic>Hard landing</topic><topic>Hovering</topic><topic>Lunar landing</topic><topic>Lunar surface</topic><topic>Moon</topic><topic>Moon landing</topic><topic>Navigation</topic><topic>OMOTENASHI</topic><topic>Orbit insertion</topic><topic>Robust design</topic><topic>Robustness</topic><topic>Rocket engines</topic><topic>Sensitivity analysis</topic><topic>Solid propellant rocket engines</topic><topic>Spacecraft</topic><topic>State vectors</topic><topic>Subsystems</topic><topic>Trajectory analysis</topic><topic>Uncertainty quantification</topic><topic>Vertical velocities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernando-Ayuso, Javier</creatorcontrib><creatorcontrib>Campagnola, Stefano</creatorcontrib><creatorcontrib>Yamaguchi, Tomohiro</creatorcontrib><creatorcontrib>Ozawa, Yusuke</creatorcontrib><creatorcontrib>Ikenaga, Toshinori</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernando-Ayuso, Javier</au><au>Campagnola, Stefano</au><au>Yamaguchi, Tomohiro</au><au>Ozawa, Yusuke</au><au>Ikenaga, Toshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OMOTENASHI trajectory analysis and design: Landing phase</atitle><jtitle>Acta astronautica</jtitle><date>2019-03</date><risdate>2019</risdate><volume>156</volume><spage>113</spage><epage>124</epage><pages>113-124</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>OMOTENASHI is a JAXA 6U cubesat that aims to perform a semi-hard landing on the Moon's surface after being deployed into a lunar fly-by orbit by the American Space Launch System, Exploration Mission-1. OMOTENASHI is a challenging mission – performing a semi-hard landing with a cubesat. One of the main challenges comes from the trajectory, which is characterized by a single deceleration maneuver instead of multiple ones for orbit insertion, descent, hovering and landing. After the deceleration maneuver, there is no time to correct for navigation and execution errors so the robustness of the trajectory is key. This paper presents the analysis and design of the OMOTENASHI landing phase. It studies the performance of the subsystems involved in the landing and proposes a deceleration maneuver to set to zero the vertical velocity at burn-out with a specified height over the Moon's surface, followed by a free-fall. In order to assess the robustness of the trajectory, it considers uncertainties in the state vector and deceleration maneuver execution. The flight path angle at lunar arrival has a great impact on the landing success rate, which imposes a very strong constraint on the design of the transfer phase trajectory. Under the current subsystems design, the most critical factors in the landing success rate are the maneuver orientation and thrust duration. Results suggest accuracy requirements for the landing devices, solid rocket motor and attitude accuracy, as well as for the transfer phase trajectory design. Finally, the navigation and maneuver execution errors may cause OMOTENASHI to prematurely impact against the surface during the solid rocket motor burn. This calls for a trade-off between the targeted final height and the maximum landing velocity.
•OMOTENASHI: a lunar semi-hard lander the size of a cubesat.•Earth-Moon transfer and landing trajectory design is highly coupled.•Error robust landing design is key.•Simplified model gives designer a first guess of sensitivities and critical errors.•High-fidelity model with real lunar local topography provides finer detail.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2018.10.017</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5237-0439</orcidid><orcidid>https://orcid.org/0000-0002-0247-5566</orcidid><orcidid>https://orcid.org/0000-0002-9548-8963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-5765 |
ispartof | Acta astronautica, 2019-03, Vol.156, p.113-124 |
issn | 0094-5765 1879-2030 |
language | eng |
recordid | cdi_proquest_journals_2218957619 |
source | Elsevier ScienceDirect Journals |
subjects | Booster rockets Cubesat Deceleration Design Design analysis Hard landing Hovering Lunar landing Lunar surface Moon Moon landing Navigation OMOTENASHI Orbit insertion Robust design Robustness Rocket engines Sensitivity analysis Solid propellant rocket engines Spacecraft State vectors Subsystems Trajectory analysis Uncertainty quantification Vertical velocities |
title | OMOTENASHI trajectory analysis and design: Landing phase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A13%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OMOTENASHI%20trajectory%20analysis%20and%20design:%20Landing%20phase&rft.jtitle=Acta%20astronautica&rft.au=Hernando-Ayuso,%20Javier&rft.date=2019-03&rft.volume=156&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2018.10.017&rft_dat=%3Cproquest_cross%3E2218957619%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218957619&rft_id=info:pmid/&rft_els_id=S0094576518301139&rfr_iscdi=true |