Development of a natural gas Methane Number prediction model

[Display omitted] •A database for Methane Number, thermal conductivity, sound velocity of natural gas mixtures.•A predictive model developed using SVR with Gaussian kernel function can accurately predict natural gas MN.•The model with sensors can estimate MN in an online process. The methane number...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-06, Vol.246, p.204-211
Hauptverfasser: Sarothi Roy, Partho, Ryu, Christopher, Dong, Sang Keun, Park, Chan Seung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue
container_start_page 204
container_title Fuel (Guildford)
container_volume 246
creator Sarothi Roy, Partho
Ryu, Christopher
Dong, Sang Keun
Park, Chan Seung
description [Display omitted] •A database for Methane Number, thermal conductivity, sound velocity of natural gas mixtures.•A predictive model developed using SVR with Gaussian kernel function can accurately predict natural gas MN.•The model with sensors can estimate MN in an online process. The methane number (MN) of natural gas is predicted using mathematical modeling and machine learning techniques which can be incorporated into a sensor. Natural gas quality is known to vary seasonally and regionally depending on the geological region. MN is defined by the gas composition and also related to the knocking resistance in a natural gas engine. This article presents the results of two different methods to predict MN, which are Multiple Regression (MR) and Support Vector Regression (SVR) that can be further specified by three kernel types: linear, polynomial, and Gaussian distributions. The analysis of the 4 methods - MR, linear SVR, polynomial SVR, and Gaussian SVR - shows that each predicts MN with a root mean square error of ±1.06, ±1.08, ±0.54, and ±0.20 respectively. About 37% of the predictions made by MR are under the ±0.5 error range. 40% of linear SVR, 52% of polynomial SVR, and 98% of Gaussian SVR predictions are within the ±0.5 error range. The SVR using Gaussian kernel outperforms the other three methods in accuracy. The results can enable the technology needed to develop an intelligent sensor that can estimate the MN of natural gas online and in real-time, economically and reliably, overall increasing fuel efficiency and emission performance.
doi_str_mv 10.1016/j.fuel.2019.02.116
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218296945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236119303448</els_id><sourcerecordid>2218296945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-2f4a32597bc3bd4abd17c1fa6b2fc032e8d3496476e6a1e95f4d93e0306850043</originalsourceid><addsrcrecordid>eNp9kE1PhDAQhhujievqH_DUxDPYaUuBZC9m_UxWvei5KWWqEKDYgon_Xjbr2dNc3uedmYeQS2ApMFDXbepm7FLOoEwZTwHUEVlBkYskh0wckxVbUgkXCk7JWYwtYywvMrkim1v8xs6PPQ4T9Y4aOphpDqajHybSZ5w-zYD0Ze4rDHQMWDd2avxAe19jd05OnOkiXvzNNXm_v3vbPia714en7c0usVLAlHAnjeBZmVdWVLU0VQ25BWdUxZ1lgmNRC1kqmStUBrDMnKxLgUwwVWSMSbEmV4feMfivGeOkWz-HYVmpOYeCl6qU2ZLih5QNPsaATo-h6U340cD03pJu9d6S3lvSjOvF0gJtDhAu9383GHS0DQ52eTSgnXTtm__wX9H7bzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218296945</pqid></control><display><type>article</type><title>Development of a natural gas Methane Number prediction model</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sarothi Roy, Partho ; Ryu, Christopher ; Dong, Sang Keun ; Park, Chan Seung</creator><creatorcontrib>Sarothi Roy, Partho ; Ryu, Christopher ; Dong, Sang Keun ; Park, Chan Seung</creatorcontrib><description>[Display omitted] •A database for Methane Number, thermal conductivity, sound velocity of natural gas mixtures.•A predictive model developed using SVR with Gaussian kernel function can accurately predict natural gas MN.•The model with sensors can estimate MN in an online process. The methane number (MN) of natural gas is predicted using mathematical modeling and machine learning techniques which can be incorporated into a sensor. Natural gas quality is known to vary seasonally and regionally depending on the geological region. MN is defined by the gas composition and also related to the knocking resistance in a natural gas engine. This article presents the results of two different methods to predict MN, which are Multiple Regression (MR) and Support Vector Regression (SVR) that can be further specified by three kernel types: linear, polynomial, and Gaussian distributions. The analysis of the 4 methods - MR, linear SVR, polynomial SVR, and Gaussian SVR - shows that each predicts MN with a root mean square error of ±1.06, ±1.08, ±0.54, and ±0.20 respectively. About 37% of the predictions made by MR are under the ±0.5 error range. 40% of linear SVR, 52% of polynomial SVR, and 98% of Gaussian SVR predictions are within the ±0.5 error range. The SVR using Gaussian kernel outperforms the other three methods in accuracy. The results can enable the technology needed to develop an intelligent sensor that can estimate the MN of natural gas online and in real-time, economically and reliably, overall increasing fuel efficiency and emission performance.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2019.02.116</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Errors ; Gas composition ; Kernels ; Learning algorithms ; Machine Learning ; Mathematical models ; Methane ; Methane Number ; Multiple Regression ; Natural gas ; Polynomials ; Prediction models ; Regression analysis ; Support Vector Machines</subject><ispartof>Fuel (Guildford), 2019-06, Vol.246, p.204-211</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-2f4a32597bc3bd4abd17c1fa6b2fc032e8d3496476e6a1e95f4d93e0306850043</citedby><cites>FETCH-LOGICAL-c431t-2f4a32597bc3bd4abd17c1fa6b2fc032e8d3496476e6a1e95f4d93e0306850043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2019.02.116$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sarothi Roy, Partho</creatorcontrib><creatorcontrib>Ryu, Christopher</creatorcontrib><creatorcontrib>Dong, Sang Keun</creatorcontrib><creatorcontrib>Park, Chan Seung</creatorcontrib><title>Development of a natural gas Methane Number prediction model</title><title>Fuel (Guildford)</title><description>[Display omitted] •A database for Methane Number, thermal conductivity, sound velocity of natural gas mixtures.•A predictive model developed using SVR with Gaussian kernel function can accurately predict natural gas MN.•The model with sensors can estimate MN in an online process. The methane number (MN) of natural gas is predicted using mathematical modeling and machine learning techniques which can be incorporated into a sensor. Natural gas quality is known to vary seasonally and regionally depending on the geological region. MN is defined by the gas composition and also related to the knocking resistance in a natural gas engine. This article presents the results of two different methods to predict MN, which are Multiple Regression (MR) and Support Vector Regression (SVR) that can be further specified by three kernel types: linear, polynomial, and Gaussian distributions. The analysis of the 4 methods - MR, linear SVR, polynomial SVR, and Gaussian SVR - shows that each predicts MN with a root mean square error of ±1.06, ±1.08, ±0.54, and ±0.20 respectively. About 37% of the predictions made by MR are under the ±0.5 error range. 40% of linear SVR, 52% of polynomial SVR, and 98% of Gaussian SVR predictions are within the ±0.5 error range. The SVR using Gaussian kernel outperforms the other three methods in accuracy. The results can enable the technology needed to develop an intelligent sensor that can estimate the MN of natural gas online and in real-time, economically and reliably, overall increasing fuel efficiency and emission performance.</description><subject>Errors</subject><subject>Gas composition</subject><subject>Kernels</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Methane</subject><subject>Methane Number</subject><subject>Multiple Regression</subject><subject>Natural gas</subject><subject>Polynomials</subject><subject>Prediction models</subject><subject>Regression analysis</subject><subject>Support Vector Machines</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PhDAQhhujievqH_DUxDPYaUuBZC9m_UxWvei5KWWqEKDYgon_Xjbr2dNc3uedmYeQS2ApMFDXbepm7FLOoEwZTwHUEVlBkYskh0wckxVbUgkXCk7JWYwtYywvMrkim1v8xs6PPQ4T9Y4aOphpDqajHybSZ5w-zYD0Ze4rDHQMWDd2avxAe19jd05OnOkiXvzNNXm_v3vbPia714en7c0usVLAlHAnjeBZmVdWVLU0VQ25BWdUxZ1lgmNRC1kqmStUBrDMnKxLgUwwVWSMSbEmV4feMfivGeOkWz-HYVmpOYeCl6qU2ZLih5QNPsaATo-h6U340cD03pJu9d6S3lvSjOvF0gJtDhAu9383GHS0DQ52eTSgnXTtm__wX9H7bzo</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Sarothi Roy, Partho</creator><creator>Ryu, Christopher</creator><creator>Dong, Sang Keun</creator><creator>Park, Chan Seung</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20190615</creationdate><title>Development of a natural gas Methane Number prediction model</title><author>Sarothi Roy, Partho ; Ryu, Christopher ; Dong, Sang Keun ; Park, Chan Seung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-2f4a32597bc3bd4abd17c1fa6b2fc032e8d3496476e6a1e95f4d93e0306850043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Errors</topic><topic>Gas composition</topic><topic>Kernels</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Methane</topic><topic>Methane Number</topic><topic>Multiple Regression</topic><topic>Natural gas</topic><topic>Polynomials</topic><topic>Prediction models</topic><topic>Regression analysis</topic><topic>Support Vector Machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarothi Roy, Partho</creatorcontrib><creatorcontrib>Ryu, Christopher</creatorcontrib><creatorcontrib>Dong, Sang Keun</creatorcontrib><creatorcontrib>Park, Chan Seung</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarothi Roy, Partho</au><au>Ryu, Christopher</au><au>Dong, Sang Keun</au><au>Park, Chan Seung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a natural gas Methane Number prediction model</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>246</volume><spage>204</spage><epage>211</epage><pages>204-211</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted] •A database for Methane Number, thermal conductivity, sound velocity of natural gas mixtures.•A predictive model developed using SVR with Gaussian kernel function can accurately predict natural gas MN.•The model with sensors can estimate MN in an online process. The methane number (MN) of natural gas is predicted using mathematical modeling and machine learning techniques which can be incorporated into a sensor. Natural gas quality is known to vary seasonally and regionally depending on the geological region. MN is defined by the gas composition and also related to the knocking resistance in a natural gas engine. This article presents the results of two different methods to predict MN, which are Multiple Regression (MR) and Support Vector Regression (SVR) that can be further specified by three kernel types: linear, polynomial, and Gaussian distributions. The analysis of the 4 methods - MR, linear SVR, polynomial SVR, and Gaussian SVR - shows that each predicts MN with a root mean square error of ±1.06, ±1.08, ±0.54, and ±0.20 respectively. About 37% of the predictions made by MR are under the ±0.5 error range. 40% of linear SVR, 52% of polynomial SVR, and 98% of Gaussian SVR predictions are within the ±0.5 error range. The SVR using Gaussian kernel outperforms the other three methods in accuracy. The results can enable the technology needed to develop an intelligent sensor that can estimate the MN of natural gas online and in real-time, economically and reliably, overall increasing fuel efficiency and emission performance.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2019.02.116</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-06, Vol.246, p.204-211
issn 0016-2361
1873-7153
language eng
recordid cdi_proquest_journals_2218296945
source Elsevier ScienceDirect Journals Complete
subjects Errors
Gas composition
Kernels
Learning algorithms
Machine Learning
Mathematical models
Methane
Methane Number
Multiple Regression
Natural gas
Polynomials
Prediction models
Regression analysis
Support Vector Machines
title Development of a natural gas Methane Number prediction model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20natural%20gas%20Methane%20Number%20prediction%20model&rft.jtitle=Fuel%20(Guildford)&rft.au=Sarothi%20Roy,%20Partho&rft.date=2019-06-15&rft.volume=246&rft.spage=204&rft.epage=211&rft.pages=204-211&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2019.02.116&rft_dat=%3Cproquest_cross%3E2218296945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218296945&rft_id=info:pmid/&rft_els_id=S0016236119303448&rfr_iscdi=true