Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting

•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2019-07, Vol.246, p.161-164
Hauptverfasser: Rong, Yu-Quan, Yang, Xian-Feng, Zhang, Wei-De, Yu, Yu-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 164
container_issue
container_start_page 161
container_title Materials letters
container_volume 246
creator Rong, Yu-Quan
Yang, Xian-Feng
Zhang, Wei-De
Yu, Yu-Xiang
description •Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed. To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.
doi_str_mv 10.1016/j.matlet.2019.03.044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218277580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X1930429X</els_id><sourcerecordid>2218277580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYjhMnCxKq-JIqlQFEN-uS2I1DGgfbBfXfkyjMTLc873t3D0LXlMSU0Oy2jfcQOhViRmgRkyQmnJ-gBc1FEvFCFKdoMWIiSoXYnqML71tCCC8IX6Dtq3X24PGhCw5CY3r8sUlwD73VHXwqDM7B0WPwuDG7pjtipbWpjOoDHhob7AjWCmvr8A8E5bAfOhOC6XeX6ExD59XV31yi98eHt9VztN48vazu11HFMh6iOiOaFTlntBY0gZKWjHOd8uneok4hAchKBoSXZQa8qIgWRSryOhEERJmrZIlu5t7B2a-D8kG29uD6caVkjOZMiDQnI8VnqnLWe6e0HJzZgztKSuTkULZydignh5IkcnQ4xu7mmBo_-DbKST_9XqnaOFUFWVvzf8EvD698-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218277580</pqid></control><display><type>article</type><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</creator><creatorcontrib>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</creatorcontrib><description>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed. To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2019.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Arrays ; Diffusion length ; Electromagnetic absorption ; Holes (electron deficiencies) ; Materials science ; Minority carriers ; Nanoflake arrays ; Photoanode ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Photoelectrons ; Porous ultrathin WO3 ; Tungsten oxides ; Water splitting</subject><ispartof>Materials letters, 2019-07, Vol.246, p.161-164</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</citedby><cites>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2019.03.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rong, Yu-Quan</creatorcontrib><creatorcontrib>Yang, Xian-Feng</creatorcontrib><creatorcontrib>Zhang, Wei-De</creatorcontrib><creatorcontrib>Yu, Yu-Xiang</creatorcontrib><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><title>Materials letters</title><description>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed. To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</description><subject>Arrays</subject><subject>Diffusion length</subject><subject>Electromagnetic absorption</subject><subject>Holes (electron deficiencies)</subject><subject>Materials science</subject><subject>Minority carriers</subject><subject>Nanoflake arrays</subject><subject>Photoanode</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrons</subject><subject>Porous ultrathin WO3</subject><subject>Tungsten oxides</subject><subject>Water splitting</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYjhMnCxKq-JIqlQFEN-uS2I1DGgfbBfXfkyjMTLc873t3D0LXlMSU0Oy2jfcQOhViRmgRkyQmnJ-gBc1FEvFCFKdoMWIiSoXYnqML71tCCC8IX6Dtq3X24PGhCw5CY3r8sUlwD73VHXwqDM7B0WPwuDG7pjtipbWpjOoDHhob7AjWCmvr8A8E5bAfOhOC6XeX6ExD59XV31yi98eHt9VztN48vazu11HFMh6iOiOaFTlntBY0gZKWjHOd8uneok4hAchKBoSXZQa8qIgWRSryOhEERJmrZIlu5t7B2a-D8kG29uD6caVkjOZMiDQnI8VnqnLWe6e0HJzZgztKSuTkULZydignh5IkcnQ4xu7mmBo_-DbKST_9XqnaOFUFWVvzf8EvD698-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Rong, Yu-Quan</creator><creator>Yang, Xian-Feng</creator><creator>Zhang, Wei-De</creator><creator>Yu, Yu-Xiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190701</creationdate><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><author>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Diffusion length</topic><topic>Electromagnetic absorption</topic><topic>Holes (electron deficiencies)</topic><topic>Materials science</topic><topic>Minority carriers</topic><topic>Nanoflake arrays</topic><topic>Photoanode</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrons</topic><topic>Porous ultrathin WO3</topic><topic>Tungsten oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Yu-Quan</creatorcontrib><creatorcontrib>Yang, Xian-Feng</creatorcontrib><creatorcontrib>Zhang, Wei-De</creatorcontrib><creatorcontrib>Yu, Yu-Xiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Yu-Quan</au><au>Yang, Xian-Feng</au><au>Zhang, Wei-De</au><au>Yu, Yu-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</atitle><jtitle>Materials letters</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>246</volume><spage>161</spage><epage>164</epage><pages>161-164</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed. To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2019.03.044</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2019-07, Vol.246, p.161-164
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2218277580
source Elsevier ScienceDirect Journals Complete
subjects Arrays
Diffusion length
Electromagnetic absorption
Holes (electron deficiencies)
Materials science
Minority carriers
Nanoflake arrays
Photoanode
Photoanodes
Photoelectric effect
Photoelectric emission
Photoelectrons
Porous ultrathin WO3
Tungsten oxides
Water splitting
title Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20ultrathin%20WO3%20nanoflake%20arrays%20as%20highly%20efficient%20photoanode%20for%20water%20splitting&rft.jtitle=Materials%20letters&rft.au=Rong,%20Yu-Quan&rft.date=2019-07-01&rft.volume=246&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2019.03.044&rft_dat=%3Cproquest_cross%3E2218277580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218277580&rft_id=info:pmid/&rft_els_id=S0167577X1930429X&rfr_iscdi=true