Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting
•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical perform...
Gespeichert in:
Veröffentlicht in: | Materials letters 2019-07, Vol.246, p.161-164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | |
container_start_page | 161 |
container_title | Materials letters |
container_volume | 246 |
creator | Rong, Yu-Quan Yang, Xian-Feng Zhang, Wei-De Yu, Yu-Xiang |
description | •Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed.
To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting. |
doi_str_mv | 10.1016/j.matlet.2019.03.044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218277580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X1930429X</els_id><sourcerecordid>2218277580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYjhMnCxKq-JIqlQFEN-uS2I1DGgfbBfXfkyjMTLc873t3D0LXlMSU0Oy2jfcQOhViRmgRkyQmnJ-gBc1FEvFCFKdoMWIiSoXYnqML71tCCC8IX6Dtq3X24PGhCw5CY3r8sUlwD73VHXwqDM7B0WPwuDG7pjtipbWpjOoDHhob7AjWCmvr8A8E5bAfOhOC6XeX6ExD59XV31yi98eHt9VztN48vazu11HFMh6iOiOaFTlntBY0gZKWjHOd8uneok4hAchKBoSXZQa8qIgWRSryOhEERJmrZIlu5t7B2a-D8kG29uD6caVkjOZMiDQnI8VnqnLWe6e0HJzZgztKSuTkULZydignh5IkcnQ4xu7mmBo_-DbKST_9XqnaOFUFWVvzf8EvD698-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218277580</pqid></control><display><type>article</type><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</creator><creatorcontrib>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</creatorcontrib><description>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed.
To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2019.03.044</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Arrays ; Diffusion length ; Electromagnetic absorption ; Holes (electron deficiencies) ; Materials science ; Minority carriers ; Nanoflake arrays ; Photoanode ; Photoanodes ; Photoelectric effect ; Photoelectric emission ; Photoelectrons ; Porous ultrathin WO3 ; Tungsten oxides ; Water splitting</subject><ispartof>Materials letters, 2019-07, Vol.246, p.161-164</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</citedby><cites>FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2019.03.044$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Rong, Yu-Quan</creatorcontrib><creatorcontrib>Yang, Xian-Feng</creatorcontrib><creatorcontrib>Zhang, Wei-De</creatorcontrib><creatorcontrib>Yu, Yu-Xiang</creatorcontrib><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><title>Materials letters</title><description>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed.
To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</description><subject>Arrays</subject><subject>Diffusion length</subject><subject>Electromagnetic absorption</subject><subject>Holes (electron deficiencies)</subject><subject>Materials science</subject><subject>Minority carriers</subject><subject>Nanoflake arrays</subject><subject>Photoanode</subject><subject>Photoanodes</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoelectrons</subject><subject>Porous ultrathin WO3</subject><subject>Tungsten oxides</subject><subject>Water splitting</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxgsMSfYjhMnCxKq-JIqlQFEN-uS2I1DGgfbBfXfkyjMTLc873t3D0LXlMSU0Oy2jfcQOhViRmgRkyQmnJ-gBc1FEvFCFKdoMWIiSoXYnqML71tCCC8IX6Dtq3X24PGhCw5CY3r8sUlwD73VHXwqDM7B0WPwuDG7pjtipbWpjOoDHhob7AjWCmvr8A8E5bAfOhOC6XeX6ExD59XV31yi98eHt9VztN48vazu11HFMh6iOiOaFTlntBY0gZKWjHOd8uneok4hAchKBoSXZQa8qIgWRSryOhEERJmrZIlu5t7B2a-D8kG29uD6caVkjOZMiDQnI8VnqnLWe6e0HJzZgztKSuTkULZydignh5IkcnQ4xu7mmBo_-DbKST_9XqnaOFUFWVvzf8EvD698-Q</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Rong, Yu-Quan</creator><creator>Yang, Xian-Feng</creator><creator>Zhang, Wei-De</creator><creator>Yu, Yu-Xiang</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20190701</creationdate><title>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</title><author>Rong, Yu-Quan ; Yang, Xian-Feng ; Zhang, Wei-De ; Yu, Yu-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d60f298421d713ab1b244f5401679d5a3aa6b2a04bb6a49c0f79578d370a7b8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Arrays</topic><topic>Diffusion length</topic><topic>Electromagnetic absorption</topic><topic>Holes (electron deficiencies)</topic><topic>Materials science</topic><topic>Minority carriers</topic><topic>Nanoflake arrays</topic><topic>Photoanode</topic><topic>Photoanodes</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoelectrons</topic><topic>Porous ultrathin WO3</topic><topic>Tungsten oxides</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rong, Yu-Quan</creatorcontrib><creatorcontrib>Yang, Xian-Feng</creatorcontrib><creatorcontrib>Zhang, Wei-De</creatorcontrib><creatorcontrib>Yu, Yu-Xiang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rong, Yu-Quan</au><au>Yang, Xian-Feng</au><au>Zhang, Wei-De</au><au>Yu, Yu-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting</atitle><jtitle>Materials letters</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>246</volume><spage>161</spage><epage>164</epage><pages>161-164</pages><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>•Porous ultrathin WO3 nanoflake array was prepared by one-step hydrothermal method.•The morphologies of WO3 nanoarrays can be tuned by the dosage of (NH4)2C2O4.•WO3 arrays showed remarkable photocurrent of 1.80 mA cm−2 at 1.23 V vs RHE.•The reasons for the improvement of photoelectrochemical performance were discussed.
To overcome the limitation of minority carrier diffusion length and high recombination of electron-hole pairs, porous ultrathin tungsten trioxide (WO3) nanoplate arrays with amorphous layer were prepared by one-step hydrothermal method without pre-seeded which possessed the highest photocurrent density of 1.80 mA cm−2 at 1.23 V vs RHE and 100 mV cathodic shift of onset potential with 0.20 g dosage of (NH4)2C2O4. The remarkable photoelectrochemical performance mainly benefits from enhanced red-shift light absorption, cathodic shifted onset potential, lowest recombination of photoelectron-hole pairs and abundant active surface areas. These results confirm that engineering the thickness and surface state of oxide semiconductor nanoplate arrays are the promising ways to improve the photoelectrochemical performance for solar water splitting.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2019.03.044</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-577X |
ispartof | Materials letters, 2019-07, Vol.246, p.161-164 |
issn | 0167-577X 1873-4979 |
language | eng |
recordid | cdi_proquest_journals_2218277580 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Arrays Diffusion length Electromagnetic absorption Holes (electron deficiencies) Materials science Minority carriers Nanoflake arrays Photoanode Photoanodes Photoelectric effect Photoelectric emission Photoelectrons Porous ultrathin WO3 Tungsten oxides Water splitting |
title | Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20ultrathin%20WO3%20nanoflake%20arrays%20as%20highly%20efficient%20photoanode%20for%20water%20splitting&rft.jtitle=Materials%20letters&rft.au=Rong,%20Yu-Quan&rft.date=2019-07-01&rft.volume=246&rft.spage=161&rft.epage=164&rft.pages=161-164&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2019.03.044&rft_dat=%3Cproquest_cross%3E2218277580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218277580&rft_id=info:pmid/&rft_els_id=S0167577X1930429X&rfr_iscdi=true |