Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

ABSTRACT In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating‐bed plasma‐enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) ele...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2019-08, Vol.136 (31), p.n/a
Hauptverfasser: Gürsoy, Mehmet, Özcan, Fatih, Karaman, Mustafa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT In this study, surfaces of multiwalled carbon nanotubes (CNTs) were functionalized with poly(hexafluorobutyl acrylate) (PHFBA) thin film using a rotating‐bed plasma‐enhanced chemical vapor deposition (PECVD) method without imparting any defects on their surfaces. Polyacrylonitrile (PAN) electrospun polymer fiber mats and composite fiber mats with CNTs and functionalized CNTs (f‐CNTs) were prepared. The wettability and chemical and morphological properties of the synthesized fiber mats were investigated, and the dispersion of CNTs and f‐CNTs in the polymer matrix was compared according to the contact angle results of electrospun polymer mats. According to the chemical and morphological characterization results, PHFBA‐coated CNTs were dispersed more uniformly in the polymer matrix than the uncoated CNTs. The f‐CNTs/PAN composite fiber mat exhibits a lower surface energy than the pristine CNTs/PAN fiber mat. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47768.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.47768