Skull shape and Bergmann's rule in mammals: hints from Old World porcupines
The genus Hystrix includes eight species of porcupines distributed in Eurasia and Africa, across a broad latitudinal gradient. Our aim was to assess whether porcupine skulls: (1) allow for a reliable interspecific distinction; (2) change in size proportionally with body size; (3) follow the Bergmann...
Gespeichert in:
Veröffentlicht in: | Journal of zoology (1987) 2019-05, Vol.308 (1), p.47-55 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Journal of zoology (1987) |
container_volume | 308 |
creator | Mori, E. Ancillotto, L. Lovari, S. Russo, D. Nerva, L. Mohamed, W. F. Motro, Y. Di Bari, P. Plebani, M. |
description | The genus Hystrix includes eight species of porcupines distributed in Eurasia and Africa, across a broad latitudinal gradient. Our aim was to assess whether porcupine skulls: (1) allow for a reliable interspecific distinction; (2) change in size proportionally with body size; (3) follow the Bergmann's rule. We measured 235 Hystrix skulls from museums and private collections. We tested for differences in skull size and we assessed whether variability in skull shape allows species recognition through a multivariate approach. All Hystrix species considered could be reliably identified by skull shape. Skull size was correlated with body size and species differed in skull shape and size, with skulls of Hystrix javanica and Hystrix africaeaustralis being respectively the smallest and the largest ones. Within Hystrix cristata, the Mediterranean and the sub‐Saharan clades differed for both skull size and shape. Using skull size, we could distinguish among African, mainland Italian and Sicilian populations. Skull size of this species decreased in size for increasing latitude values, contrary to prediction by the Bergmann's rule. Such latitudinal pattern may depend on the adaption of H. cristata to Equatorial African conditions, where the species evolved. In Italy (where H. cristata was introduced in the VI Century AD) and in North Africa, a smaller body size may be due to the local climate, or to a ‘founder effect’.
In our work, we aimed to assess whether porcupine skulls fit the Bergmann’s rule. We measured 235 Hystrix skulls of 5 species from museums and private collections. The opposite pattern of the Bergmann’s rule was observed in Hystrix cristata may be due to the fact that this species evolved in Equatorial Africa. In Italy (where introduced) and in North Africa as well, a smaller body‐size would occur because of unsuitable climates or as a result of the founder effect. |
doi_str_mv | 10.1111/jzo.12651 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2218016661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2218016661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3631-1ca623e56cfb858618c06c8912f66e166cea7f31bf89da3f0e3e5b026b92eef43</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgUQpDPwDSwyIIa3PblybDSq-K3UAhMRiOa5NUxIn2I1Q-fUYwsoNd8tzd9KL0DGQEaQar7-aEVCeww4awITLbCql2EUDInOaCcblPjqIcU0Ihck0H6CHx_euqnBc6dZi7Zf40oa3Wnt_GnHoKotLj2td17qK53hV-k3ELjQ1XlRL_NKE1NsmmK4tvY2HaM8lZ4_-5hA9X189zW6z-eLmbnYxzwzjDDIwmlNmc25cIXLBQRjCjZBAHecWODdWTx2Dwgm51MwRm3BBKC8ktdZN2BCd9Hfb0Hx0Nm7UuumCTy8VpSBIOsEhqbNemdDEGKxTbShrHbYKiPrJSqWs1G9WyY57-1lWdvs_VPevi37jG2quanw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218016661</pqid></control><display><type>article</type><title>Skull shape and Bergmann's rule in mammals: hints from Old World porcupines</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mori, E. ; Ancillotto, L. ; Lovari, S. ; Russo, D. ; Nerva, L. ; Mohamed, W. F. ; Motro, Y. ; Di Bari, P. ; Plebani, M.</creator><creatorcontrib>Mori, E. ; Ancillotto, L. ; Lovari, S. ; Russo, D. ; Nerva, L. ; Mohamed, W. F. ; Motro, Y. ; Di Bari, P. ; Plebani, M.</creatorcontrib><description>The genus Hystrix includes eight species of porcupines distributed in Eurasia and Africa, across a broad latitudinal gradient. Our aim was to assess whether porcupine skulls: (1) allow for a reliable interspecific distinction; (2) change in size proportionally with body size; (3) follow the Bergmann's rule. We measured 235 Hystrix skulls from museums and private collections. We tested for differences in skull size and we assessed whether variability in skull shape allows species recognition through a multivariate approach. All Hystrix species considered could be reliably identified by skull shape. Skull size was correlated with body size and species differed in skull shape and size, with skulls of Hystrix javanica and Hystrix africaeaustralis being respectively the smallest and the largest ones. Within Hystrix cristata, the Mediterranean and the sub‐Saharan clades differed for both skull size and shape. Using skull size, we could distinguish among African, mainland Italian and Sicilian populations. Skull size of this species decreased in size for increasing latitude values, contrary to prediction by the Bergmann's rule. Such latitudinal pattern may depend on the adaption of H. cristata to Equatorial African conditions, where the species evolved. In Italy (where H. cristata was introduced in the VI Century AD) and in North Africa, a smaller body size may be due to the local climate, or to a ‘founder effect’.
In our work, we aimed to assess whether porcupine skulls fit the Bergmann’s rule. We measured 235 Hystrix skulls of 5 species from museums and private collections. The opposite pattern of the Bergmann’s rule was observed in Hystrix cristata may be due to the fact that this species evolved in Equatorial Africa. In Italy (where introduced) and in North Africa as well, a smaller body‐size would occur because of unsuitable climates or as a result of the founder effect.</description><identifier>ISSN: 0952-8369</identifier><identifier>EISSN: 1469-7998</identifier><identifier>DOI: 10.1111/jzo.12651</identifier><language>eng</language><publisher>London: Blackwell Publishing Ltd</publisher><subject>Bergmann's rule ; Biological evolution ; Body size ; Climate effects ; Collections ; evolution ; Founder effect ; Hystrix ; Interspecific ; Latitudinal variations ; morphometrics ; Multivariate analysis ; Museums ; porcupines ; Shape ; Shape recognition ; Skull ; skull shape ; skull size ; Species</subject><ispartof>Journal of zoology (1987), 2019-05, Vol.308 (1), p.47-55</ispartof><rights>2019 The Zoological Society of London</rights><rights>Copyright © 2019 The Zoological Society of London</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3631-1ca623e56cfb858618c06c8912f66e166cea7f31bf89da3f0e3e5b026b92eef43</citedby><cites>FETCH-LOGICAL-c3631-1ca623e56cfb858618c06c8912f66e166cea7f31bf89da3f0e3e5b026b92eef43</cites><orcidid>0000-0001-8108-7950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjzo.12651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjzo.12651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Mori, E.</creatorcontrib><creatorcontrib>Ancillotto, L.</creatorcontrib><creatorcontrib>Lovari, S.</creatorcontrib><creatorcontrib>Russo, D.</creatorcontrib><creatorcontrib>Nerva, L.</creatorcontrib><creatorcontrib>Mohamed, W. F.</creatorcontrib><creatorcontrib>Motro, Y.</creatorcontrib><creatorcontrib>Di Bari, P.</creatorcontrib><creatorcontrib>Plebani, M.</creatorcontrib><title>Skull shape and Bergmann's rule in mammals: hints from Old World porcupines</title><title>Journal of zoology (1987)</title><description>The genus Hystrix includes eight species of porcupines distributed in Eurasia and Africa, across a broad latitudinal gradient. Our aim was to assess whether porcupine skulls: (1) allow for a reliable interspecific distinction; (2) change in size proportionally with body size; (3) follow the Bergmann's rule. We measured 235 Hystrix skulls from museums and private collections. We tested for differences in skull size and we assessed whether variability in skull shape allows species recognition through a multivariate approach. All Hystrix species considered could be reliably identified by skull shape. Skull size was correlated with body size and species differed in skull shape and size, with skulls of Hystrix javanica and Hystrix africaeaustralis being respectively the smallest and the largest ones. Within Hystrix cristata, the Mediterranean and the sub‐Saharan clades differed for both skull size and shape. Using skull size, we could distinguish among African, mainland Italian and Sicilian populations. Skull size of this species decreased in size for increasing latitude values, contrary to prediction by the Bergmann's rule. Such latitudinal pattern may depend on the adaption of H. cristata to Equatorial African conditions, where the species evolved. In Italy (where H. cristata was introduced in the VI Century AD) and in North Africa, a smaller body size may be due to the local climate, or to a ‘founder effect’.
In our work, we aimed to assess whether porcupine skulls fit the Bergmann’s rule. We measured 235 Hystrix skulls of 5 species from museums and private collections. The opposite pattern of the Bergmann’s rule was observed in Hystrix cristata may be due to the fact that this species evolved in Equatorial Africa. In Italy (where introduced) and in North Africa as well, a smaller body‐size would occur because of unsuitable climates or as a result of the founder effect.</description><subject>Bergmann's rule</subject><subject>Biological evolution</subject><subject>Body size</subject><subject>Climate effects</subject><subject>Collections</subject><subject>evolution</subject><subject>Founder effect</subject><subject>Hystrix</subject><subject>Interspecific</subject><subject>Latitudinal variations</subject><subject>morphometrics</subject><subject>Multivariate analysis</subject><subject>Museums</subject><subject>porcupines</subject><subject>Shape</subject><subject>Shape recognition</subject><subject>Skull</subject><subject>skull shape</subject><subject>skull size</subject><subject>Species</subject><issn>0952-8369</issn><issn>1469-7998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp10D1PwzAQBmALgUQpDPwDSwyIIa3PblybDSq-K3UAhMRiOa5NUxIn2I1Q-fUYwsoNd8tzd9KL0DGQEaQar7-aEVCeww4awITLbCql2EUDInOaCcblPjqIcU0Ihck0H6CHx_euqnBc6dZi7Zf40oa3Wnt_GnHoKotLj2td17qK53hV-k3ELjQ1XlRL_NKE1NsmmK4tvY2HaM8lZ4_-5hA9X189zW6z-eLmbnYxzwzjDDIwmlNmc25cIXLBQRjCjZBAHecWODdWTx2Dwgm51MwRm3BBKC8ktdZN2BCd9Hfb0Hx0Nm7UuumCTy8VpSBIOsEhqbNemdDEGKxTbShrHbYKiPrJSqWs1G9WyY57-1lWdvs_VPevi37jG2quanw</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Mori, E.</creator><creator>Ancillotto, L.</creator><creator>Lovari, S.</creator><creator>Russo, D.</creator><creator>Nerva, L.</creator><creator>Mohamed, W. F.</creator><creator>Motro, Y.</creator><creator>Di Bari, P.</creator><creator>Plebani, M.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-8108-7950</orcidid></search><sort><creationdate>201905</creationdate><title>Skull shape and Bergmann's rule in mammals: hints from Old World porcupines</title><author>Mori, E. ; Ancillotto, L. ; Lovari, S. ; Russo, D. ; Nerva, L. ; Mohamed, W. F. ; Motro, Y. ; Di Bari, P. ; Plebani, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3631-1ca623e56cfb858618c06c8912f66e166cea7f31bf89da3f0e3e5b026b92eef43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bergmann's rule</topic><topic>Biological evolution</topic><topic>Body size</topic><topic>Climate effects</topic><topic>Collections</topic><topic>evolution</topic><topic>Founder effect</topic><topic>Hystrix</topic><topic>Interspecific</topic><topic>Latitudinal variations</topic><topic>morphometrics</topic><topic>Multivariate analysis</topic><topic>Museums</topic><topic>porcupines</topic><topic>Shape</topic><topic>Shape recognition</topic><topic>Skull</topic><topic>skull shape</topic><topic>skull size</topic><topic>Species</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mori, E.</creatorcontrib><creatorcontrib>Ancillotto, L.</creatorcontrib><creatorcontrib>Lovari, S.</creatorcontrib><creatorcontrib>Russo, D.</creatorcontrib><creatorcontrib>Nerva, L.</creatorcontrib><creatorcontrib>Mohamed, W. F.</creatorcontrib><creatorcontrib>Motro, Y.</creatorcontrib><creatorcontrib>Di Bari, P.</creatorcontrib><creatorcontrib>Plebani, M.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of zoology (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mori, E.</au><au>Ancillotto, L.</au><au>Lovari, S.</au><au>Russo, D.</au><au>Nerva, L.</au><au>Mohamed, W. F.</au><au>Motro, Y.</au><au>Di Bari, P.</au><au>Plebani, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skull shape and Bergmann's rule in mammals: hints from Old World porcupines</atitle><jtitle>Journal of zoology (1987)</jtitle><date>2019-05</date><risdate>2019</risdate><volume>308</volume><issue>1</issue><spage>47</spage><epage>55</epage><pages>47-55</pages><issn>0952-8369</issn><eissn>1469-7998</eissn><abstract>The genus Hystrix includes eight species of porcupines distributed in Eurasia and Africa, across a broad latitudinal gradient. Our aim was to assess whether porcupine skulls: (1) allow for a reliable interspecific distinction; (2) change in size proportionally with body size; (3) follow the Bergmann's rule. We measured 235 Hystrix skulls from museums and private collections. We tested for differences in skull size and we assessed whether variability in skull shape allows species recognition through a multivariate approach. All Hystrix species considered could be reliably identified by skull shape. Skull size was correlated with body size and species differed in skull shape and size, with skulls of Hystrix javanica and Hystrix africaeaustralis being respectively the smallest and the largest ones. Within Hystrix cristata, the Mediterranean and the sub‐Saharan clades differed for both skull size and shape. Using skull size, we could distinguish among African, mainland Italian and Sicilian populations. Skull size of this species decreased in size for increasing latitude values, contrary to prediction by the Bergmann's rule. Such latitudinal pattern may depend on the adaption of H. cristata to Equatorial African conditions, where the species evolved. In Italy (where H. cristata was introduced in the VI Century AD) and in North Africa, a smaller body size may be due to the local climate, or to a ‘founder effect’.
In our work, we aimed to assess whether porcupine skulls fit the Bergmann’s rule. We measured 235 Hystrix skulls of 5 species from museums and private collections. The opposite pattern of the Bergmann’s rule was observed in Hystrix cristata may be due to the fact that this species evolved in Equatorial Africa. In Italy (where introduced) and in North Africa as well, a smaller body‐size would occur because of unsuitable climates or as a result of the founder effect.</abstract><cop>London</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/jzo.12651</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-8108-7950</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-8369 |
ispartof | Journal of zoology (1987), 2019-05, Vol.308 (1), p.47-55 |
issn | 0952-8369 1469-7998 |
language | eng |
recordid | cdi_proquest_journals_2218016661 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bergmann's rule Biological evolution Body size Climate effects Collections evolution Founder effect Hystrix Interspecific Latitudinal variations morphometrics Multivariate analysis Museums porcupines Shape Shape recognition Skull skull shape skull size Species |
title | Skull shape and Bergmann's rule in mammals: hints from Old World porcupines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skull%20shape%20and%20Bergmann's%20rule%20in%20mammals:%20hints%20from%20Old%20World%20porcupines&rft.jtitle=Journal%20of%20zoology%20(1987)&rft.au=Mori,%20E.&rft.date=2019-05&rft.volume=308&rft.issue=1&rft.spage=47&rft.epage=55&rft.pages=47-55&rft.issn=0952-8369&rft.eissn=1469-7998&rft_id=info:doi/10.1111/jzo.12651&rft_dat=%3Cproquest_cross%3E2218016661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218016661&rft_id=info:pmid/&rfr_iscdi=true |