An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems
The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of object...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2019-09, Vol.75 (1), p.35-62 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | Journal of global optimization |
container_volume | 75 |
creator | Turgut, Ozgu Dalkiran, Evrim Murat, Alper E. |
description | The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of objectives. We propose a deterministic exact parallel algorithm for solving MOIP problems with any number of objectives. The proposed algorithm generates the full set of nondominated solutions based on intelligent iterative decomposition of the objective space utilizing a particular scalarization scheme. The algorithm relies on a set of rules that exploits regional dominance relations among the decomposed partitions for pruning. These expediting rules are both used as part of a pre-solve step as well as judiciously employed throughout the parallel running threads. Using an extensive test-bed of MOIP instances with three, four, five, and six objectives, the performance of the proposed algorithm is evaluated and compared with leading benchmark algorithms for MOIPs. Results of the experimental study demonstrate the effectiveness of the proposed algorithm and the computational advantage of its parallelism. |
doi_str_mv | 10.1007/s10898-019-00778-x |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2217187345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718426515</galeid><sourcerecordid>A718426515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a31c71eca21a21986818cf933ed158ea5a7830898a703f66e64694bddb2ed8ee3</originalsourceid><addsrcrecordid>eNp9kVtLBCEYhiUK2rb-QFdC15aHdca5XKITBN3UtbjON5OLM07qxvbvc5ugu1DwwPP4qS9Cl4xeM0rrm8SoahShrCFlWSuyP0ILJmtBeMOqY7SgDZdEUspO0VlKW0ppoyRfoLgeMeyNzXgy0XgPHofNFmx2n4DTZCzgFmwYppBcdmHExvchuvw-4C5EnIL_dGOPh53PjvyZbszQQ8RTDH00w3BgynzjYUjn6KQzPsHF77hEb_d3r7eP5Pnl4el2_UyskCoTI5itGVjDWemNqhRTtmuEgJZJBUaaWonDq01NRVdVUK2qZrVp2w2HVgGIJbqazy2FP3aQst6GXRxLSc05q5mqxUoW6nqmeuNBu7ELORpbWguDs2GEzpX9dcFXvJLsIPBZsDGkFKHTU3SDiV-aUX0IQ89h6BKG_glD74skZikVeCw_83eXf6xvkx2P3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2217187345</pqid></control><display><type>article</type><title>An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems</title><source>SpringerLink Journals</source><creator>Turgut, Ozgu ; Dalkiran, Evrim ; Murat, Alper E.</creator><creatorcontrib>Turgut, Ozgu ; Dalkiran, Evrim ; Murat, Alper E.</creatorcontrib><description>The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of objectives. We propose a deterministic exact parallel algorithm for solving MOIP problems with any number of objectives. The proposed algorithm generates the full set of nondominated solutions based on intelligent iterative decomposition of the objective space utilizing a particular scalarization scheme. The algorithm relies on a set of rules that exploits regional dominance relations among the decomposed partitions for pruning. These expediting rules are both used as part of a pre-solve step as well as judiciously employed throughout the parallel running threads. Using an extensive test-bed of MOIP instances with three, four, five, and six objectives, the performance of the proposed algorithm is evaluated and compared with leading benchmark algorithms for MOIPs. Results of the experimental study demonstrate the effectiveness of the proposed algorithm and the computational advantage of its parallelism.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-019-00778-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Decomposition ; Integer programming ; Iterative methods ; Mathematics ; Mathematics and Statistics ; Multiple objective analysis ; Objectives ; Operations Research/Decision Theory ; Optimization ; Pruning ; Real Functions</subject><ispartof>Journal of global optimization, 2019-09, Vol.75 (1), p.35-62</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a31c71eca21a21986818cf933ed158ea5a7830898a703f66e64694bddb2ed8ee3</citedby><cites>FETCH-LOGICAL-c358t-a31c71eca21a21986818cf933ed158ea5a7830898a703f66e64694bddb2ed8ee3</cites><orcidid>0000-0001-7677-1184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-019-00778-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-019-00778-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Turgut, Ozgu</creatorcontrib><creatorcontrib>Dalkiran, Evrim</creatorcontrib><creatorcontrib>Murat, Alper E.</creatorcontrib><title>An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of objectives. We propose a deterministic exact parallel algorithm for solving MOIP problems with any number of objectives. The proposed algorithm generates the full set of nondominated solutions based on intelligent iterative decomposition of the objective space utilizing a particular scalarization scheme. The algorithm relies on a set of rules that exploits regional dominance relations among the decomposed partitions for pruning. These expediting rules are both used as part of a pre-solve step as well as judiciously employed throughout the parallel running threads. Using an extensive test-bed of MOIP instances with three, four, five, and six objectives, the performance of the proposed algorithm is evaluated and compared with leading benchmark algorithms for MOIPs. Results of the experimental study demonstrate the effectiveness of the proposed algorithm and the computational advantage of its parallelism.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Decomposition</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multiple objective analysis</subject><subject>Objectives</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Pruning</subject><subject>Real Functions</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVtLBCEYhiUK2rb-QFdC15aHdca5XKITBN3UtbjON5OLM07qxvbvc5ugu1DwwPP4qS9Cl4xeM0rrm8SoahShrCFlWSuyP0ILJmtBeMOqY7SgDZdEUspO0VlKW0ppoyRfoLgeMeyNzXgy0XgPHofNFmx2n4DTZCzgFmwYppBcdmHExvchuvw-4C5EnIL_dGOPh53PjvyZbszQQ8RTDH00w3BgynzjYUjn6KQzPsHF77hEb_d3r7eP5Pnl4el2_UyskCoTI5itGVjDWemNqhRTtmuEgJZJBUaaWonDq01NRVdVUK2qZrVp2w2HVgGIJbqazy2FP3aQst6GXRxLSc05q5mqxUoW6nqmeuNBu7ELORpbWguDs2GEzpX9dcFXvJLsIPBZsDGkFKHTU3SDiV-aUX0IQ89h6BKG_glD74skZikVeCw_83eXf6xvkx2P3g</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Turgut, Ozgu</creator><creator>Dalkiran, Evrim</creator><creator>Murat, Alper E.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7677-1184</orcidid></search><sort><creationdate>20190901</creationdate><title>An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems</title><author>Turgut, Ozgu ; Dalkiran, Evrim ; Murat, Alper E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a31c71eca21a21986818cf933ed158ea5a7830898a703f66e64694bddb2ed8ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Decomposition</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multiple objective analysis</topic><topic>Objectives</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Pruning</topic><topic>Real Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turgut, Ozgu</creatorcontrib><creatorcontrib>Dalkiran, Evrim</creatorcontrib><creatorcontrib>Murat, Alper E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turgut, Ozgu</au><au>Dalkiran, Evrim</au><au>Murat, Alper E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>75</volume><issue>1</issue><spage>35</spage><epage>62</epage><pages>35-62</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>The set of all nondominated solutions for a multi-objective integer programming (MOIP) problem is finite if the feasible region is bounded, and it may contain unsupported solutions. Finding these sets is NP-hard for most MOIP problems and current methods are unable to scale with the number of objectives. We propose a deterministic exact parallel algorithm for solving MOIP problems with any number of objectives. The proposed algorithm generates the full set of nondominated solutions based on intelligent iterative decomposition of the objective space utilizing a particular scalarization scheme. The algorithm relies on a set of rules that exploits regional dominance relations among the decomposed partitions for pruning. These expediting rules are both used as part of a pre-solve step as well as judiciously employed throughout the parallel running threads. Using an extensive test-bed of MOIP instances with three, four, five, and six objectives, the performance of the proposed algorithm is evaluated and compared with leading benchmark algorithms for MOIPs. Results of the experimental study demonstrate the effectiveness of the proposed algorithm and the computational advantage of its parallelism.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-019-00778-x</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0001-7677-1184</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2019-09, Vol.75 (1), p.35-62 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2217187345 |
source | SpringerLink Journals |
subjects | Algorithms Computer Science Decomposition Integer programming Iterative methods Mathematics Mathematics and Statistics Multiple objective analysis Objectives Operations Research/Decision Theory Optimization Pruning Real Functions |
title | An exact parallel objective space decomposition algorithm for solving multi-objective integer programming problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20parallel%20objective%20space%20decomposition%20algorithm%20for%20solving%20multi-objective%20integer%20programming%20problems&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Turgut,%20Ozgu&rft.date=2019-09-01&rft.volume=75&rft.issue=1&rft.spage=35&rft.epage=62&rft.pages=35-62&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-019-00778-x&rft_dat=%3Cgale_proqu%3EA718426515%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2217187345&rft_id=info:pmid/&rft_galeid=A718426515&rfr_iscdi=true |