Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel

The relation of creep rupture life to minimum creep rate, namely Monkman-Grant (MG) relation is examined by using a creep database of modified 9Cr-1Mo steel. The database covers wide ranges of creep rupture life up to 1.2 × 105 h and of minimum creep rate down to 7.6 × 10−8 h−1. The MG plot exhibits...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2019-03, Vol.749, p.223-234
Hauptverfasser: Maruyama, Kouichi, Sekido, Nobuaki, Yoshimi, Kyosuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 234
container_issue
container_start_page 223
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 749
creator Maruyama, Kouichi
Sekido, Nobuaki
Yoshimi, Kyosuke
description The relation of creep rupture life to minimum creep rate, namely Monkman-Grant (MG) relation is examined by using a creep database of modified 9Cr-1Mo steel. The database covers wide ranges of creep rupture life up to 1.2 × 105 h and of minimum creep rate down to 7.6 × 10−8 h−1. The MG plot exhibits a low overall value of MG exponent (p = 0.85) together with wide scatter of data points at long rupture life. Causes of the low p value and the wide scatter are discussed in the present study paying attention to change in creep curve shape with creep rupture life. There are four regions H, M, L1 and L2 showing different creep behavior in the steel. Regional MG relations are examined also in each region. Values of p are less than unity and change among the four regions. The p value is especially low (0.62) in long-term region L2. The regional p values less than unity result in the low overall p value of 0.85. The especially low regional value of p in the long-term region causes the wide scatter of data points in the overall MG plot. A modified Monkman-Grant equation (Eq. (29)) is proposed taking account of creep deceleration rate A (=−1/(dln ε˙/dε), where ε˙ and ε are the creep strain rate and the creep strain) in primary creep and creep acceleration rate B (=1/(dln ε˙/dε)) in tertiary creep. The rates characterize shape of a creep curve. The modified equation can explain the difference of p values among the four regions.
doi_str_mv 10.1016/j.msea.2019.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216898485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509319301649</els_id><sourcerecordid>2216898485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-b8e2c7e1c04929b2c20654bbefdf7d6c25f1769328b7ce4f9b3ffbfd2630bf183</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPA866TZP8FvEjRKrR4qeewm53UrN2kJlvBb29KPXsaePPezONHyC2DnAGr7od8jNjmHJjMgecA4ozMWFOLrJCiOiczkJxlJUhxSa5iHACAFVDOyGbx0botRmodXXv3ObYuW4bWTTTgrp2sd7QdvdtS4w-B6oC4T5tt0iP1ho6-t8ZiT-UiZGztaZwQd9fkwrS7iDd_c07en582i5ds9bZ8XTyuMl2IZsq6BrmukWkoJJcd1xyqsug6NL2p-0rz0rC6koI3Xa2xMLITxnSm55WAzrBGzMnd6e4--K8DxkkNqaVLLxXnrGpkUzRlcvGTSwcfY0Cj9sGObfhRDNSRnhrUkZ460lPAVaKXQg-nEKb-3xaDitqi09jbgHpSvbf_xX8BRbJ4QQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216898485</pqid></control><display><type>article</type><title>Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel</title><source>Access via ScienceDirect (Elsevier)</source><creator>Maruyama, Kouichi ; Sekido, Nobuaki ; Yoshimi, Kyosuke</creator><creatorcontrib>Maruyama, Kouichi ; Sekido, Nobuaki ; Yoshimi, Kyosuke</creatorcontrib><description>The relation of creep rupture life to minimum creep rate, namely Monkman-Grant (MG) relation is examined by using a creep database of modified 9Cr-1Mo steel. The database covers wide ranges of creep rupture life up to 1.2 × 105 h and of minimum creep rate down to 7.6 × 10−8 h−1. The MG plot exhibits a low overall value of MG exponent (p = 0.85) together with wide scatter of data points at long rupture life. Causes of the low p value and the wide scatter are discussed in the present study paying attention to change in creep curve shape with creep rupture life. There are four regions H, M, L1 and L2 showing different creep behavior in the steel. Regional MG relations are examined also in each region. Values of p are less than unity and change among the four regions. The p value is especially low (0.62) in long-term region L2. The regional p values less than unity result in the low overall p value of 0.85. The especially low regional value of p in the long-term region causes the wide scatter of data points in the overall MG plot. A modified Monkman-Grant equation (Eq. (29)) is proposed taking account of creep deceleration rate A (=−1/(dln ε˙/dε), where ε˙ and ε are the creep strain rate and the creep strain) in primary creep and creep acceleration rate B (=1/(dln ε˙/dε)) in tertiary creep. The rates characterize shape of a creep curve. The modified equation can explain the difference of p values among the four regions.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2019.02.003</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acceleration ; Chromium molybdenum steels ; Creep curve ; Creep rate ; Creep rupture life ; Data points ; Deceleration ; Grade 91 steel ; Impact analysis ; Minimum creep rate ; Multi-region creep modelling ; Omega creep curve equation ; Rupture ; Scattering ; Strain rate ; Unity</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2019-03, Vol.749, p.223-234</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 11, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-b8e2c7e1c04929b2c20654bbefdf7d6c25f1769328b7ce4f9b3ffbfd2630bf183</citedby><cites>FETCH-LOGICAL-c438t-b8e2c7e1c04929b2c20654bbefdf7d6c25f1769328b7ce4f9b3ffbfd2630bf183</cites><orcidid>0000-0003-4335-2252</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2019.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Maruyama, Kouichi</creatorcontrib><creatorcontrib>Sekido, Nobuaki</creatorcontrib><creatorcontrib>Yoshimi, Kyosuke</creatorcontrib><title>Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The relation of creep rupture life to minimum creep rate, namely Monkman-Grant (MG) relation is examined by using a creep database of modified 9Cr-1Mo steel. The database covers wide ranges of creep rupture life up to 1.2 × 105 h and of minimum creep rate down to 7.6 × 10−8 h−1. The MG plot exhibits a low overall value of MG exponent (p = 0.85) together with wide scatter of data points at long rupture life. Causes of the low p value and the wide scatter are discussed in the present study paying attention to change in creep curve shape with creep rupture life. There are four regions H, M, L1 and L2 showing different creep behavior in the steel. Regional MG relations are examined also in each region. Values of p are less than unity and change among the four regions. The p value is especially low (0.62) in long-term region L2. The regional p values less than unity result in the low overall p value of 0.85. The especially low regional value of p in the long-term region causes the wide scatter of data points in the overall MG plot. A modified Monkman-Grant equation (Eq. (29)) is proposed taking account of creep deceleration rate A (=−1/(dln ε˙/dε), where ε˙ and ε are the creep strain rate and the creep strain) in primary creep and creep acceleration rate B (=1/(dln ε˙/dε)) in tertiary creep. The rates characterize shape of a creep curve. The modified equation can explain the difference of p values among the four regions.</description><subject>Acceleration</subject><subject>Chromium molybdenum steels</subject><subject>Creep curve</subject><subject>Creep rate</subject><subject>Creep rupture life</subject><subject>Data points</subject><subject>Deceleration</subject><subject>Grade 91 steel</subject><subject>Impact analysis</subject><subject>Minimum creep rate</subject><subject>Multi-region creep modelling</subject><subject>Omega creep curve equation</subject><subject>Rupture</subject><subject>Scattering</subject><subject>Strain rate</subject><subject>Unity</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPA866TZP8FvEjRKrR4qeewm53UrN2kJlvBb29KPXsaePPezONHyC2DnAGr7od8jNjmHJjMgecA4ozMWFOLrJCiOiczkJxlJUhxSa5iHACAFVDOyGbx0botRmodXXv3ObYuW4bWTTTgrp2sd7QdvdtS4w-B6oC4T5tt0iP1ho6-t8ZiT-UiZGztaZwQd9fkwrS7iDd_c07en582i5ds9bZ8XTyuMl2IZsq6BrmukWkoJJcd1xyqsug6NL2p-0rz0rC6koI3Xa2xMLITxnSm55WAzrBGzMnd6e4--K8DxkkNqaVLLxXnrGpkUzRlcvGTSwcfY0Cj9sGObfhRDNSRnhrUkZ460lPAVaKXQg-nEKb-3xaDitqi09jbgHpSvbf_xX8BRbJ4QQ</recordid><startdate>20190311</startdate><enddate>20190311</enddate><creator>Maruyama, Kouichi</creator><creator>Sekido, Nobuaki</creator><creator>Yoshimi, Kyosuke</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4335-2252</orcidid></search><sort><creationdate>20190311</creationdate><title>Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel</title><author>Maruyama, Kouichi ; Sekido, Nobuaki ; Yoshimi, Kyosuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-b8e2c7e1c04929b2c20654bbefdf7d6c25f1769328b7ce4f9b3ffbfd2630bf183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Chromium molybdenum steels</topic><topic>Creep curve</topic><topic>Creep rate</topic><topic>Creep rupture life</topic><topic>Data points</topic><topic>Deceleration</topic><topic>Grade 91 steel</topic><topic>Impact analysis</topic><topic>Minimum creep rate</topic><topic>Multi-region creep modelling</topic><topic>Omega creep curve equation</topic><topic>Rupture</topic><topic>Scattering</topic><topic>Strain rate</topic><topic>Unity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruyama, Kouichi</creatorcontrib><creatorcontrib>Sekido, Nobuaki</creatorcontrib><creatorcontrib>Yoshimi, Kyosuke</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruyama, Kouichi</au><au>Sekido, Nobuaki</au><au>Yoshimi, Kyosuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2019-03-11</date><risdate>2019</risdate><volume>749</volume><spage>223</spage><epage>234</epage><pages>223-234</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The relation of creep rupture life to minimum creep rate, namely Monkman-Grant (MG) relation is examined by using a creep database of modified 9Cr-1Mo steel. The database covers wide ranges of creep rupture life up to 1.2 × 105 h and of minimum creep rate down to 7.6 × 10−8 h−1. The MG plot exhibits a low overall value of MG exponent (p = 0.85) together with wide scatter of data points at long rupture life. Causes of the low p value and the wide scatter are discussed in the present study paying attention to change in creep curve shape with creep rupture life. There are four regions H, M, L1 and L2 showing different creep behavior in the steel. Regional MG relations are examined also in each region. Values of p are less than unity and change among the four regions. The p value is especially low (0.62) in long-term region L2. The regional p values less than unity result in the low overall p value of 0.85. The especially low regional value of p in the long-term region causes the wide scatter of data points in the overall MG plot. A modified Monkman-Grant equation (Eq. (29)) is proposed taking account of creep deceleration rate A (=−1/(dln ε˙/dε), where ε˙ and ε are the creep strain rate and the creep strain) in primary creep and creep acceleration rate B (=1/(dln ε˙/dε)) in tertiary creep. The rates characterize shape of a creep curve. The modified equation can explain the difference of p values among the four regions.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2019.02.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4335-2252</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2019-03, Vol.749, p.223-234
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2216898485
source Access via ScienceDirect (Elsevier)
subjects Acceleration
Chromium molybdenum steels
Creep curve
Creep rate
Creep rupture life
Data points
Deceleration
Grade 91 steel
Impact analysis
Minimum creep rate
Multi-region creep modelling
Omega creep curve equation
Rupture
Scattering
Strain rate
Unity
title Changes in Monkman-Grant relation among four creep regions of modified 9Cr-1Mo steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20Monkman-Grant%20relation%20among%20four%20creep%20regions%20of%20modified%209Cr-1Mo%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Maruyama,%20Kouichi&rft.date=2019-03-11&rft.volume=749&rft.spage=223&rft.epage=234&rft.pages=223-234&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2019.02.003&rft_dat=%3Cproquest_cross%3E2216898485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216898485&rft_id=info:pmid/&rft_els_id=S0921509319301649&rfr_iscdi=true