A deep forest classifier with weights of class probability distribution subsets
A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions a...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2019-06, Vol.173, p.15-27 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | |
container_start_page | 15 |
container_title | Knowledge-based systems |
container_volume | 173 |
creator | Utkin, Lev V. Kovalev, Maxim S. Meldo, Anna A. |
description | A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF. |
doi_str_mv | 10.1016/j.knosys.2019.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216897294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119300838</els_id><sourcerecordid>2216897294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4DDwHPu-Zru5uLUIpfUOhFzyHJvrVZ66YmWUv_vSnrWXjwDm9m3swgdEtJSQld3Pfl5-DjMZaMUFkSloedoRltalbUgshzNCOyIkVNKnqJrmLsCckQ2szQZolbgD3ufICYsN3pGF3nIOCDS1t8APexTRH7bjrhffBGG7dz6YhbF1NwZkzODziOJkKK1-ii07sIN397jt6fHt9WL8V68_y6Wq4Ly7lIhaZUQFVJMLqlLRe1tQ01nJqqNoSLRUepFIRXzBpJJJVNp7kU0DZGcw0t4XN0N-lmQ99jtq56P4Yhv1Q52KKRNZMio8SEssHHGKBT--C-dDgqStSpOtWrqTp1qk4Rlodl2sNEg5zgJ5ehonUwWGhdAJtU693_Ar9ennpL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216897294</pqid></control><display><type>article</type><title>A deep forest classifier with weights of class probability distribution subsets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</creator><creatorcontrib>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</creatorcontrib><description>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Computation ; Decision tree ; Deep learning ; Forests ; Imprecise statistical model ; Mathematical models ; Optimization ; Probability ; Quadratic programming ; Random forest</subject><ispartof>Knowledge-based systems, 2019-06, Vol.173, p.15-27</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</citedby><cites>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705119300838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Utkin, Lev V.</creatorcontrib><creatorcontrib>Kovalev, Maxim S.</creatorcontrib><creatorcontrib>Meldo, Anna A.</creatorcontrib><title>A deep forest classifier with weights of class probability distribution subsets</title><title>Knowledge-based systems</title><description>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computation</subject><subject>Decision tree</subject><subject>Deep learning</subject><subject>Forests</subject><subject>Imprecise statistical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Probability</subject><subject>Quadratic programming</subject><subject>Random forest</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4DDwHPu-Zru5uLUIpfUOhFzyHJvrVZ66YmWUv_vSnrWXjwDm9m3swgdEtJSQld3Pfl5-DjMZaMUFkSloedoRltalbUgshzNCOyIkVNKnqJrmLsCckQ2szQZolbgD3ufICYsN3pGF3nIOCDS1t8APexTRH7bjrhffBGG7dz6YhbF1NwZkzODziOJkKK1-ii07sIN397jt6fHt9WL8V68_y6Wq4Ly7lIhaZUQFVJMLqlLRe1tQ01nJqqNoSLRUepFIRXzBpJJJVNp7kU0DZGcw0t4XN0N-lmQ99jtq56P4Yhv1Q52KKRNZMio8SEssHHGKBT--C-dDgqStSpOtWrqTp1qk4Rlodl2sNEg5zgJ5ehonUwWGhdAJtU693_Ar9ennpL</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Utkin, Lev V.</creator><creator>Kovalev, Maxim S.</creator><creator>Meldo, Anna A.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190601</creationdate><title>A deep forest classifier with weights of class probability distribution subsets</title><author>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computation</topic><topic>Decision tree</topic><topic>Deep learning</topic><topic>Forests</topic><topic>Imprecise statistical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Probability</topic><topic>Quadratic programming</topic><topic>Random forest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utkin, Lev V.</creatorcontrib><creatorcontrib>Kovalev, Maxim S.</creatorcontrib><creatorcontrib>Meldo, Anna A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utkin, Lev V.</au><au>Kovalev, Maxim S.</au><au>Meldo, Anna A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep forest classifier with weights of class probability distribution subsets</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>173</volume><spage>15</spage><epage>27</epage><pages>15-27</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.02.022</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2019-06, Vol.173, p.15-27 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2216897294 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Classification Computation Decision tree Deep learning Forests Imprecise statistical model Mathematical models Optimization Probability Quadratic programming Random forest |
title | A deep forest classifier with weights of class probability distribution subsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20forest%20classifier%20with%20weights%20of%20class%20probability%20distribution%20subsets&rft.jtitle=Knowledge-based%20systems&rft.au=Utkin,%20Lev%20V.&rft.date=2019-06-01&rft.volume=173&rft.spage=15&rft.epage=27&rft.pages=15-27&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.02.022&rft_dat=%3Cproquest_cross%3E2216897294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216897294&rft_id=info:pmid/&rft_els_id=S0950705119300838&rfr_iscdi=true |