A deep forest classifier with weights of class probability distribution subsets

A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2019-06, Vol.173, p.15-27
Hauptverfasser: Utkin, Lev V., Kovalev, Maxim S., Meldo, Anna A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 15
container_title Knowledge-based systems
container_volume 173
creator Utkin, Lev V.
Kovalev, Maxim S.
Meldo, Anna A.
description A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.
doi_str_mv 10.1016/j.knosys.2019.02.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216897294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705119300838</els_id><sourcerecordid>2216897294</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJgrf4DDwHPu-Zru5uLUIpfUOhFzyHJvrVZ66YmWUv_vSnrWXjwDm9m3swgdEtJSQld3Pfl5-DjMZaMUFkSloedoRltalbUgshzNCOyIkVNKnqJrmLsCckQ2szQZolbgD3ufICYsN3pGF3nIOCDS1t8APexTRH7bjrhffBGG7dz6YhbF1NwZkzODziOJkKK1-ii07sIN397jt6fHt9WL8V68_y6Wq4Ly7lIhaZUQFVJMLqlLRe1tQ01nJqqNoSLRUepFIRXzBpJJJVNp7kU0DZGcw0t4XN0N-lmQ99jtq56P4Yhv1Q52KKRNZMio8SEssHHGKBT--C-dDgqStSpOtWrqTp1qk4Rlodl2sNEg5zgJ5ehonUwWGhdAJtU693_Ar9ennpL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216897294</pqid></control><display><type>article</type><title>A deep forest classifier with weights of class probability distribution subsets</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</creator><creatorcontrib>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</creatorcontrib><description>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2019.02.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; Classification ; Computation ; Decision tree ; Deep learning ; Forests ; Imprecise statistical model ; Mathematical models ; Optimization ; Probability ; Quadratic programming ; Random forest</subject><ispartof>Knowledge-based systems, 2019-06, Vol.173, p.15-27</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jun 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</citedby><cites>FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0950705119300838$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Utkin, Lev V.</creatorcontrib><creatorcontrib>Kovalev, Maxim S.</creatorcontrib><creatorcontrib>Meldo, Anna A.</creatorcontrib><title>A deep forest classifier with weights of class probability distribution subsets</title><title>Knowledge-based systems</title><description>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computation</subject><subject>Decision tree</subject><subject>Deep learning</subject><subject>Forests</subject><subject>Imprecise statistical model</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Probability</subject><subject>Quadratic programming</subject><subject>Random forest</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJgrf4DDwHPu-Zru5uLUIpfUOhFzyHJvrVZ66YmWUv_vSnrWXjwDm9m3swgdEtJSQld3Pfl5-DjMZaMUFkSloedoRltalbUgshzNCOyIkVNKnqJrmLsCckQ2szQZolbgD3ufICYsN3pGF3nIOCDS1t8APexTRH7bjrhffBGG7dz6YhbF1NwZkzODziOJkKK1-ii07sIN397jt6fHt9WL8V68_y6Wq4Ly7lIhaZUQFVJMLqlLRe1tQ01nJqqNoSLRUepFIRXzBpJJJVNp7kU0DZGcw0t4XN0N-lmQ99jtq56P4Yhv1Q52KKRNZMio8SEssHHGKBT--C-dDgqStSpOtWrqTp1qk4Rlodl2sNEg5zgJ5ehonUwWGhdAJtU693_Ar9ennpL</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Utkin, Lev V.</creator><creator>Kovalev, Maxim S.</creator><creator>Meldo, Anna A.</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20190601</creationdate><title>A deep forest classifier with weights of class probability distribution subsets</title><author>Utkin, Lev V. ; Kovalev, Maxim S. ; Meldo, Anna A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-a114e559ebad1d347cc81b31b57b0346f11940352cb909198fa394ed8ba3aed03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computation</topic><topic>Decision tree</topic><topic>Deep learning</topic><topic>Forests</topic><topic>Imprecise statistical model</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Probability</topic><topic>Quadratic programming</topic><topic>Random forest</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Utkin, Lev V.</creatorcontrib><creatorcontrib>Kovalev, Maxim S.</creatorcontrib><creatorcontrib>Meldo, Anna A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Utkin, Lev V.</au><au>Kovalev, Maxim S.</au><au>Meldo, Anna A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A deep forest classifier with weights of class probability distribution subsets</atitle><jtitle>Knowledge-based systems</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>173</volume><spage>15</spage><epage>27</epage><pages>15-27</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>A modification of the Deep Forest or gcForest proposed by Zhou and Feng for solving classification problems is proposed in the paper and called as PM-DF. The main idea for improving classification performance of the Deep Forest is to assign weights to subsets of the class probability distributions at the leaf nodes computed for every training example. The subsets of probability distributions are defined by using Walley’s imprecise pari-mutuel model which compactly divides the unit simplex of probabilities into subsets and allows us to simplify the algorithm of the weight calculation. The weights of the distribution subsets can be viewed in this case as second-order probabilities over subsets of the probability simplex. The optimal weights are computed by solving the standard quadratic optimization problem. The numerical experiments illustrate PM-DF.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2019.02.022</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2019-06, Vol.173, p.15-27
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2216897294
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
Classification
Computation
Decision tree
Deep learning
Forests
Imprecise statistical model
Mathematical models
Optimization
Probability
Quadratic programming
Random forest
title A deep forest classifier with weights of class probability distribution subsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T21%3A33%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20deep%20forest%20classifier%20with%20weights%20of%20class%20probability%20distribution%20subsets&rft.jtitle=Knowledge-based%20systems&rft.au=Utkin,%20Lev%20V.&rft.date=2019-06-01&rft.volume=173&rft.spage=15&rft.epage=27&rft.pages=15-27&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2019.02.022&rft_dat=%3Cproquest_cross%3E2216897294%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216897294&rft_id=info:pmid/&rft_els_id=S0950705119300838&rfr_iscdi=true