Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm

This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 1999-06, Vol.55 (2), p.463-469
Hauptverfasser: Muthén, Bengt, Shedden, Kerby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 469
container_issue 2
container_start_page 463
container_title Biometrics
container_volume 55
creator Muthén, Bengt
Shedden, Kerby
description This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random‐coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed.
doi_str_mv 10.1111/j.0006-341X.1999.00463.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_221689602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2533793</jstor_id><sourcerecordid>2533793</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5303-5ba25b3103a04dfdb926fbb054e236393014f0732aba2f9a3dceae9f209a6af13</originalsourceid><addsrcrecordid>eNqNkE9PGzEQxS3UCgLtN0Cw6n2D7Vl74wMHyn-JNKpogNvIm7WDt0kW7F0Rvj1eNkqv9WU8fr83Hj1CEkaHLJ6TakgplSlk7GnIlFKxzSQM1ztkwETGUppx-oUMttAe2Q-hiq0SlO-SPcaAjThlA3Jx5VauMcnYrZvWx1qXZuFW8-TNNc_b10nbzOqlCck0dFrzbJLLcXK2mNc-Ystv5KvVi2C-b-oBmV5d_jm_Se8m17fnZ3fpTACFVBSaiwIYBU2z0paF4tIWBRWZ4SBBAWWZpTlwHUGrNJQzo42ynCottWVwQH70c198_dqa0GBVt34Vv0TOmRwpSXmERj0083UI3lh88W6p_Tsyil16WGEXDHbBYJcefqaH62g92sxvi6Up_xk3cUXgtAfe3MK8__dg_Hk7Gcdb9B_2_io0td_6uQDIVSenvexCY9ZbWfu_KHPIBT7-ukYpbtjD76d7zCN_3PNW16jn3gWc3sc9RbeGVDKDD4sKnqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221689602</pqid></control><display><type>article</type><title>Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Muthén, Bengt ; Shedden, Kerby</creator><creatorcontrib>Muthén, Bengt ; Shedden, Kerby</creatorcontrib><description>This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random‐coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed.</description><identifier>ISSN: 0006-341X</identifier><identifier>EISSN: 1541-0420</identifier><identifier>DOI: 10.1111/j.0006-341X.1999.00463.x</identifier><identifier>PMID: 11318201</identifier><identifier>CODEN: BIOMA5</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Adolescent ; Adult ; alcohol abuse ; Alcohol drinking ; Alcohol Drinking - adverse effects ; alcoholic beverages ; Alcoholism - etiology ; Alcohols ; Algorithms ; Analytical estimating ; Biometry ; Covariance matrices ; Female ; Growth modeling ; growth models ; Humans ; Latent class analysis ; Latent variables ; Likelihood Functions ; Logistic regression ; Male ; Maximum likelihood ; Modeling ; Models, Statistical ; Normativity ; Parametric models ; prediction ; probability ; Standard error ; Trajectories ; Trajectory classes ; young adults</subject><ispartof>Biometrics, 1999-06, Vol.55 (2), p.463-469</ispartof><rights>Copyright 1999 The International Biometric Society</rights><rights>Copyright International Biometric Society Jun 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5303-5ba25b3103a04dfdb926fbb054e236393014f0732aba2f9a3dceae9f209a6af13</citedby><cites>FETCH-LOGICAL-c5303-5ba25b3103a04dfdb926fbb054e236393014f0732aba2f9a3dceae9f209a6af13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2533793$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2533793$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,1411,27902,27903,45552,45553,57994,57998,58227,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11318201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Shedden, Kerby</creatorcontrib><title>Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm</title><title>Biometrics</title><addtitle>Biometrics</addtitle><description>This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random‐coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed.</description><subject>Adolescent</subject><subject>Adult</subject><subject>alcohol abuse</subject><subject>Alcohol drinking</subject><subject>Alcohol Drinking - adverse effects</subject><subject>alcoholic beverages</subject><subject>Alcoholism - etiology</subject><subject>Alcohols</subject><subject>Algorithms</subject><subject>Analytical estimating</subject><subject>Biometry</subject><subject>Covariance matrices</subject><subject>Female</subject><subject>Growth modeling</subject><subject>growth models</subject><subject>Humans</subject><subject>Latent class analysis</subject><subject>Latent variables</subject><subject>Likelihood Functions</subject><subject>Logistic regression</subject><subject>Male</subject><subject>Maximum likelihood</subject><subject>Modeling</subject><subject>Models, Statistical</subject><subject>Normativity</subject><subject>Parametric models</subject><subject>prediction</subject><subject>probability</subject><subject>Standard error</subject><subject>Trajectories</subject><subject>Trajectory classes</subject><subject>young adults</subject><issn>0006-341X</issn><issn>1541-0420</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkE9PGzEQxS3UCgLtN0Cw6n2D7Vl74wMHyn-JNKpogNvIm7WDt0kW7F0Rvj1eNkqv9WU8fr83Hj1CEkaHLJ6TakgplSlk7GnIlFKxzSQM1ztkwETGUppx-oUMttAe2Q-hiq0SlO-SPcaAjThlA3Jx5VauMcnYrZvWx1qXZuFW8-TNNc_b10nbzOqlCck0dFrzbJLLcXK2mNc-Ystv5KvVi2C-b-oBmV5d_jm_Se8m17fnZ3fpTACFVBSaiwIYBU2z0paF4tIWBRWZ4SBBAWWZpTlwHUGrNJQzo42ynCottWVwQH70c198_dqa0GBVt34Vv0TOmRwpSXmERj0083UI3lh88W6p_Tsyil16WGEXDHbBYJcefqaH62g92sxvi6Up_xk3cUXgtAfe3MK8__dg_Hk7Gcdb9B_2_io0td_6uQDIVSenvexCY9ZbWfu_KHPIBT7-ukYpbtjD76d7zCN_3PNW16jn3gWc3sc9RbeGVDKDD4sKnqs</recordid><startdate>199906</startdate><enddate>199906</enddate><creator>Muthén, Bengt</creator><creator>Shedden, Kerby</creator><general>Blackwell Publishing Ltd</general><general>International Biometric Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>199906</creationdate><title>Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm</title><author>Muthén, Bengt ; Shedden, Kerby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5303-5ba25b3103a04dfdb926fbb054e236393014f0732aba2f9a3dceae9f209a6af13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>alcohol abuse</topic><topic>Alcohol drinking</topic><topic>Alcohol Drinking - adverse effects</topic><topic>alcoholic beverages</topic><topic>Alcoholism - etiology</topic><topic>Alcohols</topic><topic>Algorithms</topic><topic>Analytical estimating</topic><topic>Biometry</topic><topic>Covariance matrices</topic><topic>Female</topic><topic>Growth modeling</topic><topic>growth models</topic><topic>Humans</topic><topic>Latent class analysis</topic><topic>Latent variables</topic><topic>Likelihood Functions</topic><topic>Logistic regression</topic><topic>Male</topic><topic>Maximum likelihood</topic><topic>Modeling</topic><topic>Models, Statistical</topic><topic>Normativity</topic><topic>Parametric models</topic><topic>prediction</topic><topic>probability</topic><topic>Standard error</topic><topic>Trajectories</topic><topic>Trajectory classes</topic><topic>young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muthén, Bengt</creatorcontrib><creatorcontrib>Shedden, Kerby</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muthén, Bengt</au><au>Shedden, Kerby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm</atitle><jtitle>Biometrics</jtitle><addtitle>Biometrics</addtitle><date>1999-06</date><risdate>1999</risdate><volume>55</volume><issue>2</issue><spage>463</spage><epage>469</epage><pages>463-469</pages><issn>0006-341X</issn><eissn>1541-0420</eissn><coden>BIOMA5</coden><abstract>This paper discusses the analysis of an extended finite mixture model where the latent classes corresponding to the mixture components for one set of observed variables influence a second set of observed variables. The research is motivated by a repeated measurement study using a random coefficient model to assess the influence of latent growth trajectory class membership on the probability of a binary disease outcome. More generally, this model can be seen as a combination of latent class modeling and conventional mixture modeling. The EM algorithm is used for estimation. As an illustration, a random‐coefficient growth model for the prediction of alcohol dependence from three latent classes of heavy alcohol use trajectories among young adults is analyzed.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11318201</pmid><doi>10.1111/j.0006-341X.1999.00463.x</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-341X
ispartof Biometrics, 1999-06, Vol.55 (2), p.463-469
issn 0006-341X
1541-0420
language eng
recordid cdi_proquest_journals_221689602
source Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Wiley Online Library Journals Frontfile Complete; JSTOR Mathematics & Statistics
subjects Adolescent
Adult
alcohol abuse
Alcohol drinking
Alcohol Drinking - adverse effects
alcoholic beverages
Alcoholism - etiology
Alcohols
Algorithms
Analytical estimating
Biometry
Covariance matrices
Female
Growth modeling
growth models
Humans
Latent class analysis
Latent variables
Likelihood Functions
Logistic regression
Male
Maximum likelihood
Modeling
Models, Statistical
Normativity
Parametric models
prediction
probability
Standard error
Trajectories
Trajectory classes
young adults
title Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Mixture%20Modeling%20with%20Mixture%20Outcomes%20Using%20the%20EM%20Algorithm&rft.jtitle=Biometrics&rft.au=Muth%C3%A9n,%20Bengt&rft.date=1999-06&rft.volume=55&rft.issue=2&rft.spage=463&rft.epage=469&rft.pages=463-469&rft.issn=0006-341X&rft.eissn=1541-0420&rft.coden=BIOMA5&rft_id=info:doi/10.1111/j.0006-341X.1999.00463.x&rft_dat=%3Cjstor_proqu%3E2533793%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221689602&rft_id=info:pmid/11318201&rft_jstor_id=2533793&rfr_iscdi=true