Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber

Key factors were investigated to extend the lifetime of a combustion chamber of a large thrust rocket engine. Two-dimensional finite element simulations were conducted to estimate creep damage and low cycle fatigue damage to the inner liner of a combustion chamber wall. In these simulations, the eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-05, Vol.158, p.244-252
Hauptverfasser: Kimura, Toshiya, Moriya, Shin-ich, Takahashi, Masaharu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue
container_start_page 244
container_title Acta astronautica
container_volume 158
creator Kimura, Toshiya
Moriya, Shin-ich
Takahashi, Masaharu
description Key factors were investigated to extend the lifetime of a combustion chamber of a large thrust rocket engine. Two-dimensional finite element simulations were conducted to estimate creep damage and low cycle fatigue damage to the inner liner of a combustion chamber wall. In these simulations, the effects of difference of heat treatments to the inner liner material, heat shield by a thermal barrier coating, and thermal expansion of the outer shell on lifetime were examined. It was found that heat shield by a thermal barrier coating had the largest effect in extension of the lifetime though the effect depended on the physical characteristic of the inner liner material. Expansion or contraction of the outer liner during combustion affects the restriction of the inner liner resulting in the extension of the lifetime. By combination of these effects, the lifetime can be extended up to about a factor of 10 longer than that of a combustion chamber without any effects. •The properties of the copper alloy of an inner liner strongly affect the lifetime of a chamber wall.•A thermal barrier coating on the surface of the inner liner effectively extends the lifetime.•The outer shell with a low coefficient of thermal expansion can extend the lifetime.•By combination of these effects, the lifetime will be extended about 10 times longer than normal one.
doi_str_mv 10.1016/j.actaastro.2018.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216892609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576517319239</els_id><sourcerecordid>2216892609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-8090b6eab0d85eefeb1fc1a2bd88292c423b00ee9d495cb416a1ee00c69bfa943</originalsourceid><addsrcrecordid>eNqFkM9qHDEMxk1podu0z1BDrpmJ7J0_9jGEJC0s5NKejeyRu15mxqntDeQR8tbxsiXXXiSQvu8T-jH2XUArQAzXhxZdQcwlxVaCUC30LQj9gW2EGnUjYQsf2QZAd00_Dv1n9iXnAwCMUukNe73znlzJPHq-Jyy8pFoXWuuoRB7WlRKfw6kuWCgFnK942VNacOYWUwp14yKWsP654rhOPB6rjOc9zfO7hce1hngqYaHTJayWxR5zCXXh9rhYSl_ZJ49zpm__-gX7fX_36_ZHs3t8-Hl7s2vcVo2lUaDBDoQWJtUTebLCO4HSTkpJLV0ntxaASE-d7p3txICCCMAN2nrU3faCXZ5zn1L8e6RczCEe01pPGinFoLQcQFfVeFa5FHNO5M1TCgumFyPAnLibg3nnbk7cDfSmcq_Om7OT6hPPFY_JLtDqaAqpkjZTDP_NeANUzZNx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216892609</pqid></control><display><type>article</type><title>Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kimura, Toshiya ; Moriya, Shin-ich ; Takahashi, Masaharu</creator><creatorcontrib>Kimura, Toshiya ; Moriya, Shin-ich ; Takahashi, Masaharu</creatorcontrib><description>Key factors were investigated to extend the lifetime of a combustion chamber of a large thrust rocket engine. Two-dimensional finite element simulations were conducted to estimate creep damage and low cycle fatigue damage to the inner liner of a combustion chamber wall. In these simulations, the effects of difference of heat treatments to the inner liner material, heat shield by a thermal barrier coating, and thermal expansion of the outer shell on lifetime were examined. It was found that heat shield by a thermal barrier coating had the largest effect in extension of the lifetime though the effect depended on the physical characteristic of the inner liner material. Expansion or contraction of the outer liner during combustion affects the restriction of the inner liner resulting in the extension of the lifetime. By combination of these effects, the lifetime can be extended up to about a factor of 10 longer than that of a combustion chamber without any effects. •The properties of the copper alloy of an inner liner strongly affect the lifetime of a chamber wall.•A thermal barrier coating on the surface of the inner liner effectively extends the lifetime.•The outer shell with a low coefficient of thermal expansion can extend the lifetime.•By combination of these effects, the lifetime will be extended about 10 times longer than normal one.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2018.05.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Combustion ; Combustion chamber ; Combustion chambers ; Copper alloys ; Crack propagation ; Creep (materials) ; Creep damage ; Fatigue failure ; Finite element method ; Lifetime prediction ; Low cycle fatigue ; Low cycle fatigue damages ; Physical properties ; Product design ; Product development ; Rocket engine ; Rocket engines ; Rockets ; Thermal barrier coating ; Thermal barrier coatings ; Thermal expansion</subject><ispartof>Acta astronautica, 2019-05, Vol.158, p.244-252</ispartof><rights>2018 IAA</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-8090b6eab0d85eefeb1fc1a2bd88292c423b00ee9d495cb416a1ee00c69bfa943</citedby><cites>FETCH-LOGICAL-c387t-8090b6eab0d85eefeb1fc1a2bd88292c423b00ee9d495cb416a1ee00c69bfa943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2018.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Kimura, Toshiya</creatorcontrib><creatorcontrib>Moriya, Shin-ich</creatorcontrib><creatorcontrib>Takahashi, Masaharu</creatorcontrib><title>Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber</title><title>Acta astronautica</title><description>Key factors were investigated to extend the lifetime of a combustion chamber of a large thrust rocket engine. Two-dimensional finite element simulations were conducted to estimate creep damage and low cycle fatigue damage to the inner liner of a combustion chamber wall. In these simulations, the effects of difference of heat treatments to the inner liner material, heat shield by a thermal barrier coating, and thermal expansion of the outer shell on lifetime were examined. It was found that heat shield by a thermal barrier coating had the largest effect in extension of the lifetime though the effect depended on the physical characteristic of the inner liner material. Expansion or contraction of the outer liner during combustion affects the restriction of the inner liner resulting in the extension of the lifetime. By combination of these effects, the lifetime can be extended up to about a factor of 10 longer than that of a combustion chamber without any effects. •The properties of the copper alloy of an inner liner strongly affect the lifetime of a chamber wall.•A thermal barrier coating on the surface of the inner liner effectively extends the lifetime.•The outer shell with a low coefficient of thermal expansion can extend the lifetime.•By combination of these effects, the lifetime will be extended about 10 times longer than normal one.</description><subject>Combustion</subject><subject>Combustion chamber</subject><subject>Combustion chambers</subject><subject>Copper alloys</subject><subject>Crack propagation</subject><subject>Creep (materials)</subject><subject>Creep damage</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Lifetime prediction</subject><subject>Low cycle fatigue</subject><subject>Low cycle fatigue damages</subject><subject>Physical properties</subject><subject>Product design</subject><subject>Product development</subject><subject>Rocket engine</subject><subject>Rocket engines</subject><subject>Rockets</subject><subject>Thermal barrier coating</subject><subject>Thermal barrier coatings</subject><subject>Thermal expansion</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM9qHDEMxk1podu0z1BDrpmJ7J0_9jGEJC0s5NKejeyRu15mxqntDeQR8tbxsiXXXiSQvu8T-jH2XUArQAzXhxZdQcwlxVaCUC30LQj9gW2EGnUjYQsf2QZAd00_Dv1n9iXnAwCMUukNe73znlzJPHq-Jyy8pFoXWuuoRB7WlRKfw6kuWCgFnK942VNacOYWUwp14yKWsP654rhOPB6rjOc9zfO7hce1hngqYaHTJayWxR5zCXXh9rhYSl_ZJ49zpm__-gX7fX_36_ZHs3t8-Hl7s2vcVo2lUaDBDoQWJtUTebLCO4HSTkpJLV0ntxaASE-d7p3txICCCMAN2nrU3faCXZ5zn1L8e6RczCEe01pPGinFoLQcQFfVeFa5FHNO5M1TCgumFyPAnLibg3nnbk7cDfSmcq_Om7OT6hPPFY_JLtDqaAqpkjZTDP_NeANUzZNx</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kimura, Toshiya</creator><creator>Moriya, Shin-ich</creator><creator>Takahashi, Masaharu</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>20190501</creationdate><title>Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber</title><author>Kimura, Toshiya ; Moriya, Shin-ich ; Takahashi, Masaharu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-8090b6eab0d85eefeb1fc1a2bd88292c423b00ee9d495cb416a1ee00c69bfa943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Combustion</topic><topic>Combustion chamber</topic><topic>Combustion chambers</topic><topic>Copper alloys</topic><topic>Crack propagation</topic><topic>Creep (materials)</topic><topic>Creep damage</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Lifetime prediction</topic><topic>Low cycle fatigue</topic><topic>Low cycle fatigue damages</topic><topic>Physical properties</topic><topic>Product design</topic><topic>Product development</topic><topic>Rocket engine</topic><topic>Rocket engines</topic><topic>Rockets</topic><topic>Thermal barrier coating</topic><topic>Thermal barrier coatings</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kimura, Toshiya</creatorcontrib><creatorcontrib>Moriya, Shin-ich</creatorcontrib><creatorcontrib>Takahashi, Masaharu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kimura, Toshiya</au><au>Moriya, Shin-ich</au><au>Takahashi, Masaharu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber</atitle><jtitle>Acta astronautica</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>158</volume><spage>244</spage><epage>252</epage><pages>244-252</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Key factors were investigated to extend the lifetime of a combustion chamber of a large thrust rocket engine. Two-dimensional finite element simulations were conducted to estimate creep damage and low cycle fatigue damage to the inner liner of a combustion chamber wall. In these simulations, the effects of difference of heat treatments to the inner liner material, heat shield by a thermal barrier coating, and thermal expansion of the outer shell on lifetime were examined. It was found that heat shield by a thermal barrier coating had the largest effect in extension of the lifetime though the effect depended on the physical characteristic of the inner liner material. Expansion or contraction of the outer liner during combustion affects the restriction of the inner liner resulting in the extension of the lifetime. By combination of these effects, the lifetime can be extended up to about a factor of 10 longer than that of a combustion chamber without any effects. •The properties of the copper alloy of an inner liner strongly affect the lifetime of a chamber wall.•A thermal barrier coating on the surface of the inner liner effectively extends the lifetime.•The outer shell with a low coefficient of thermal expansion can extend the lifetime.•By combination of these effects, the lifetime will be extended about 10 times longer than normal one.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2018.05.019</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-05, Vol.158, p.244-252
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2216892609
source ScienceDirect Journals (5 years ago - present)
subjects Combustion
Combustion chamber
Combustion chambers
Copper alloys
Crack propagation
Creep (materials)
Creep damage
Fatigue failure
Finite element method
Lifetime prediction
Low cycle fatigue
Low cycle fatigue damages
Physical properties
Product design
Product development
Rocket engine
Rocket engines
Rockets
Thermal barrier coating
Thermal barrier coatings
Thermal expansion
title Effects of heat treatments to inner liner material, thermal barrier coating, and outer shell material on lifetime of a combustion chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20heat%20treatments%20to%20inner%20liner%20material,%20thermal%20barrier%20coating,%20and%20outer%20shell%20material%20on%20lifetime%20of%20a%20combustion%20chamber&rft.jtitle=Acta%20astronautica&rft.au=Kimura,%20Toshiya&rft.date=2019-05-01&rft.volume=158&rft.spage=244&rft.epage=252&rft.pages=244-252&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2018.05.019&rft_dat=%3Cproquest_cross%3E2216892609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216892609&rft_id=info:pmid/&rft_els_id=S0094576517319239&rfr_iscdi=true