Design of a film cooled dual-bell nozzle

The design of a film cooled dual-bell nozzle is presented. The nozzle is part of a thrust chamber assembly that adopts an existing LOX/GH2 thrust chamber. The dual-bell base nozzle, including the gaseous hydrogen cooling film injection, is a downscaled redesign of an already tested film cooled TIC n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta astronautica 2019-05, Vol.158, p.342-350
Hauptverfasser: Stark, Ralf, Génin, Chloé, Mader, Christian, Maier, Dietmar, Schneider, Dirk, Wohlhüter, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 350
container_issue
container_start_page 342
container_title Acta astronautica
container_volume 158
creator Stark, Ralf
Génin, Chloé
Mader, Christian
Maier, Dietmar
Schneider, Dirk
Wohlhüter, Michael
description The design of a film cooled dual-bell nozzle is presented. The nozzle is part of a thrust chamber assembly that adopts an existing LOX/GH2 thrust chamber. The dual-bell base nozzle, including the gaseous hydrogen cooling film injection, is a downscaled redesign of an already tested film cooled TIC nozzle. Future hot flow tests at the test facility P8 will study the impact of a ROF variation and a cooling film mass flow variation on the operation mode transition of the dual-bell. For this reason, a homogeneous hot flow and cooling film distribution are mandatory. To meet those demands, extensive numerical studies were performed and design optimizations were derived. The test specimen will be operated under sea level conditions. •Dual bell rocket nozzle with supersonic hydrogen cooling film.•Numerical study on coaxial injector head hydrogen inflow position.•Numerical study on cooling film layer mass flow distribution.•Impact of cooling film mass flow and ROF on dual-bell nozzle transition.•ALM gives new possibilities in design, fluid management and sensor application.
doi_str_mv 10.1016/j.actaastro.2018.05.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216890481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576517318891</els_id><sourcerecordid>2216890481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-359e460da4eaf0770199017e88ceeccdea4bc188570c76043565e1cf3b9634643</originalsourceid><addsrcrecordid>eNqFkEtLw0AUhQdRsFZ_gwE3bhLvZN7LUp9QcKPrYTq5kQlpps6kgv31plTcCgfO5pxzuR8h1xQqClTedZXzo3N5TLGqgeoKxCR5QmZUK1PWwOCUzAAML4WS4pxc5NwBgKq1mZHbe8zhYyhiW7iiDf2m8DH22BTNzvXlGvu-GOJ-3-MlOWtdn_Hq1-fk_fHhbflcrl6fXpaLVekZZ2PJhEEuoXEcXQtKATUGqEKtPaL3DTq-9lRrocArCZwJKZD6lq2NZFxyNic3x91tip87zKPt4i4N00lb11RqA1zTKaWOKZ9izglbu01h49K3pWAPWGxn_7DYAxYLYpKcmotjE6cnvgImm33AwWMTEvrRNjH8u_EDq0Rtng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216890481</pqid></control><display><type>article</type><title>Design of a film cooled dual-bell nozzle</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Stark, Ralf ; Génin, Chloé ; Mader, Christian ; Maier, Dietmar ; Schneider, Dirk ; Wohlhüter, Michael</creator><creatorcontrib>Stark, Ralf ; Génin, Chloé ; Mader, Christian ; Maier, Dietmar ; Schneider, Dirk ; Wohlhüter, Michael</creatorcontrib><description>The design of a film cooled dual-bell nozzle is presented. The nozzle is part of a thrust chamber assembly that adopts an existing LOX/GH2 thrust chamber. The dual-bell base nozzle, including the gaseous hydrogen cooling film injection, is a downscaled redesign of an already tested film cooled TIC nozzle. Future hot flow tests at the test facility P8 will study the impact of a ROF variation and a cooling film mass flow variation on the operation mode transition of the dual-bell. For this reason, a homogeneous hot flow and cooling film distribution are mandatory. To meet those demands, extensive numerical studies were performed and design optimizations were derived. The test specimen will be operated under sea level conditions. •Dual bell rocket nozzle with supersonic hydrogen cooling film.•Numerical study on coaxial injector head hydrogen inflow position.•Numerical study on cooling film layer mass flow distribution.•Impact of cooling film mass flow and ROF on dual-bell nozzle transition.•ALM gives new possibilities in design, fluid management and sensor application.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2018.05.056</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Additive layer manufacturing ; Cooling ; Design ; Design optimization ; Dual-bell nozzle ; Film cooling ; Hydrogen ; Injector head ; Liquid oxygen ; Mass flow ; Nozzles ; Numerical simulation ; Redesign ; Rocket engine ; Rockets ; Sea level ; Thrust chambers</subject><ispartof>Acta astronautica, 2019-05, Vol.158, p.342-350</ispartof><rights>2018 IAA</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-359e460da4eaf0770199017e88ceeccdea4bc188570c76043565e1cf3b9634643</citedby><cites>FETCH-LOGICAL-c343t-359e460da4eaf0770199017e88ceeccdea4bc188570c76043565e1cf3b9634643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actaastro.2018.05.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Stark, Ralf</creatorcontrib><creatorcontrib>Génin, Chloé</creatorcontrib><creatorcontrib>Mader, Christian</creatorcontrib><creatorcontrib>Maier, Dietmar</creatorcontrib><creatorcontrib>Schneider, Dirk</creatorcontrib><creatorcontrib>Wohlhüter, Michael</creatorcontrib><title>Design of a film cooled dual-bell nozzle</title><title>Acta astronautica</title><description>The design of a film cooled dual-bell nozzle is presented. The nozzle is part of a thrust chamber assembly that adopts an existing LOX/GH2 thrust chamber. The dual-bell base nozzle, including the gaseous hydrogen cooling film injection, is a downscaled redesign of an already tested film cooled TIC nozzle. Future hot flow tests at the test facility P8 will study the impact of a ROF variation and a cooling film mass flow variation on the operation mode transition of the dual-bell. For this reason, a homogeneous hot flow and cooling film distribution are mandatory. To meet those demands, extensive numerical studies were performed and design optimizations were derived. The test specimen will be operated under sea level conditions. •Dual bell rocket nozzle with supersonic hydrogen cooling film.•Numerical study on coaxial injector head hydrogen inflow position.•Numerical study on cooling film layer mass flow distribution.•Impact of cooling film mass flow and ROF on dual-bell nozzle transition.•ALM gives new possibilities in design, fluid management and sensor application.</description><subject>Additive layer manufacturing</subject><subject>Cooling</subject><subject>Design</subject><subject>Design optimization</subject><subject>Dual-bell nozzle</subject><subject>Film cooling</subject><subject>Hydrogen</subject><subject>Injector head</subject><subject>Liquid oxygen</subject><subject>Mass flow</subject><subject>Nozzles</subject><subject>Numerical simulation</subject><subject>Redesign</subject><subject>Rocket engine</subject><subject>Rockets</subject><subject>Sea level</subject><subject>Thrust chambers</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AUhQdRsFZ_gwE3bhLvZN7LUp9QcKPrYTq5kQlpps6kgv31plTcCgfO5pxzuR8h1xQqClTedZXzo3N5TLGqgeoKxCR5QmZUK1PWwOCUzAAML4WS4pxc5NwBgKq1mZHbe8zhYyhiW7iiDf2m8DH22BTNzvXlGvu-GOJ-3-MlOWtdn_Hq1-fk_fHhbflcrl6fXpaLVekZZ2PJhEEuoXEcXQtKATUGqEKtPaL3DTq-9lRrocArCZwJKZD6lq2NZFxyNic3x91tip87zKPt4i4N00lb11RqA1zTKaWOKZ9izglbu01h49K3pWAPWGxn_7DYAxYLYpKcmotjE6cnvgImm33AwWMTEvrRNjH8u_EDq0Rtng</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Stark, Ralf</creator><creator>Génin, Chloé</creator><creator>Mader, Christian</creator><creator>Maier, Dietmar</creator><creator>Schneider, Dirk</creator><creator>Wohlhüter, Michael</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201905</creationdate><title>Design of a film cooled dual-bell nozzle</title><author>Stark, Ralf ; Génin, Chloé ; Mader, Christian ; Maier, Dietmar ; Schneider, Dirk ; Wohlhüter, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-359e460da4eaf0770199017e88ceeccdea4bc188570c76043565e1cf3b9634643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Additive layer manufacturing</topic><topic>Cooling</topic><topic>Design</topic><topic>Design optimization</topic><topic>Dual-bell nozzle</topic><topic>Film cooling</topic><topic>Hydrogen</topic><topic>Injector head</topic><topic>Liquid oxygen</topic><topic>Mass flow</topic><topic>Nozzles</topic><topic>Numerical simulation</topic><topic>Redesign</topic><topic>Rocket engine</topic><topic>Rockets</topic><topic>Sea level</topic><topic>Thrust chambers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stark, Ralf</creatorcontrib><creatorcontrib>Génin, Chloé</creatorcontrib><creatorcontrib>Mader, Christian</creatorcontrib><creatorcontrib>Maier, Dietmar</creatorcontrib><creatorcontrib>Schneider, Dirk</creatorcontrib><creatorcontrib>Wohlhüter, Michael</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stark, Ralf</au><au>Génin, Chloé</au><au>Mader, Christian</au><au>Maier, Dietmar</au><au>Schneider, Dirk</au><au>Wohlhüter, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a film cooled dual-bell nozzle</atitle><jtitle>Acta astronautica</jtitle><date>2019-05</date><risdate>2019</risdate><volume>158</volume><spage>342</spage><epage>350</epage><pages>342-350</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>The design of a film cooled dual-bell nozzle is presented. The nozzle is part of a thrust chamber assembly that adopts an existing LOX/GH2 thrust chamber. The dual-bell base nozzle, including the gaseous hydrogen cooling film injection, is a downscaled redesign of an already tested film cooled TIC nozzle. Future hot flow tests at the test facility P8 will study the impact of a ROF variation and a cooling film mass flow variation on the operation mode transition of the dual-bell. For this reason, a homogeneous hot flow and cooling film distribution are mandatory. To meet those demands, extensive numerical studies were performed and design optimizations were derived. The test specimen will be operated under sea level conditions. •Dual bell rocket nozzle with supersonic hydrogen cooling film.•Numerical study on coaxial injector head hydrogen inflow position.•Numerical study on cooling film layer mass flow distribution.•Impact of cooling film mass flow and ROF on dual-bell nozzle transition.•ALM gives new possibilities in design, fluid management and sensor application.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2018.05.056</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2019-05, Vol.158, p.342-350
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_journals_2216890481
source ScienceDirect Journals (5 years ago - present)
subjects Additive layer manufacturing
Cooling
Design
Design optimization
Dual-bell nozzle
Film cooling
Hydrogen
Injector head
Liquid oxygen
Mass flow
Nozzles
Numerical simulation
Redesign
Rocket engine
Rockets
Sea level
Thrust chambers
title Design of a film cooled dual-bell nozzle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A55%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20film%20cooled%20dual-bell%20nozzle&rft.jtitle=Acta%20astronautica&rft.au=Stark,%20Ralf&rft.date=2019-05&rft.volume=158&rft.spage=342&rft.epage=350&rft.pages=342-350&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2018.05.056&rft_dat=%3Cproquest_cross%3E2216890481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216890481&rft_id=info:pmid/&rft_els_id=S0094576517318891&rfr_iscdi=true