Unstable jets generated by a sphere descending in a very strongly stratified fluid

The flow around a sphere descending at constant speed in a very strongly stratified fluid ( $Fr\lesssim 0.2$ ) is investigated by the shadowgraph method and particle image velocimetry. Unlike the flow under moderately strong stratification ( $Fr\gtrsim 0.2$ ), which supports a thin cylindrical jet,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-05, Vol.867, p.26-44
Hauptverfasser: Akiyama, Shinsaku, Waki, Yusuke, Okino, Shinya, Hanazaki, Hideshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 44
container_issue
container_start_page 26
container_title Journal of fluid mechanics
container_volume 867
creator Akiyama, Shinsaku
Waki, Yusuke
Okino, Shinya
Hanazaki, Hideshi
description The flow around a sphere descending at constant speed in a very strongly stratified fluid ( $Fr\lesssim 0.2$ ) is investigated by the shadowgraph method and particle image velocimetry. Unlike the flow under moderately strong stratification ( $Fr\gtrsim 0.2$ ), which supports a thin cylindrical jet, the flow generates an unstable jet, which often develops into turbulence. The transition from a stable jet to an unstable jet occurs for a sufficiently low Froude number $Fr$ that satisfies $Fr/Re
doi_str_mv 10.1017/jfm.2019.123
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216660390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2019_123</cupid><sourcerecordid>2216660390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1953b67660fc2b71c1d005c8960df6215b93d2540b4ef78f69e87b501753d6a03</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkjZtjrL4BYIg7jkkzaS2dLtr0hX235t1F7x4mmF45h3mIeSaQc6AVXe9X-UcmMoZFydkxgqpskoW5SmZAXCeMcbhnFzE2AMwAaqakfflGCdjB6Q9TpG2OGIwEzpqd9TQuPnEgNRhbHB03djSbkzjbww7GqewHtvhtzFT57u05Idt5y7JmTdDxKtjnZPl48PH4jl7fXt6Wdy_Zo2Q9ZQxVQorKynBN9xWrGEOoGxqJcF5yVlplXC8LMAW6KvaS4V1Zcv0ZymcNCDm5OaQuwnrry3GSffrbRjTSc05kylYqD11e6CasI4xoNeb0K1M2GkGem9NJ2t6b00nawnPj7hZ2dC5Fv9S_134AYFhbg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216660390</pqid></control><display><type>article</type><title>Unstable jets generated by a sphere descending in a very strongly stratified fluid</title><source>Cambridge University Press Journals Complete</source><creator>Akiyama, Shinsaku ; Waki, Yusuke ; Okino, Shinya ; Hanazaki, Hideshi</creator><creatorcontrib>Akiyama, Shinsaku ; Waki, Yusuke ; Okino, Shinya ; Hanazaki, Hideshi</creatorcontrib><description>The flow around a sphere descending at constant speed in a very strongly stratified fluid ( $Fr\lesssim 0.2$ ) is investigated by the shadowgraph method and particle image velocimetry. Unlike the flow under moderately strong stratification ( $Fr\gtrsim 0.2$ ), which supports a thin cylindrical jet, the flow generates an unstable jet, which often develops into turbulence. The transition from a stable jet to an unstable jet occurs for a sufficiently low Froude number $Fr$ that satisfies $Fr/Re&lt;1.57\times 10^{-3}$ . The Froude number $Fr$ here is in the range of $0.0157&lt;Fr&lt;0.157$ or lower, while the Reynolds number $Re$ is in the range of $10\lesssim Re\lesssim 100$ for which the homogeneous fluid shows steady and axisymmetric flows. Since the radius of the jet can be estimated by the primitive length scale of the stratified fluid, i.e. $l_{\unicode[STIX]{x1D708}}^{\ast }=\sqrt{\unicode[STIX]{x1D708}^{\ast }/N^{\ast }}$ or $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=\sqrt{Fr/2Re}$ , this predicts that the jet becomes unstable when it becomes thinner than approximately $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=0.028$ , where $N^{\ast }$ is the Brunt–Väisälä frequency, $a^{\ast }$ the radius of the sphere and $\unicode[STIX]{x1D708}^{\ast }$ the kinematic viscosity of the fluid. The instability begins when the boundary-layer thickness becomes thin, and the disturbances generated by shear instabilities would be transferred into the jet. When the flow is marginally unstable, two unstable states, i.e. a meandering jet and a turbulent jet, can appear. The meandering jet is thin with a high vertical velocity, while the turbulent jet is broad with a much smaller velocity. The meandering jet may persist for a long time, or develop into a turbulent jet in a short time. When the instability is sufficiently strong, only the turbulent jet could be observed.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.123</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Brunt-Vaisala frequency ; Carbon ; Density stratification ; Fluid dynamics ; Fluid flow ; Froude number ; Instability ; Investigations ; JFM Papers ; Kelvin-Helmholtz instability ; Kinematic viscosity ; Laboratories ; Meandering ; Particle image velocimetry ; Plankton ; Reynolds number ; Salinity ; Stratification ; Thickness ; Turbulence ; Turbulent jets ; Velocity ; Velocity measurement ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2019-05, Vol.867, p.26-44</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1953b67660fc2b71c1d005c8960df6215b93d2540b4ef78f69e87b501753d6a03</citedby><cites>FETCH-LOGICAL-c368t-1953b67660fc2b71c1d005c8960df6215b93d2540b4ef78f69e87b501753d6a03</cites><orcidid>0000-0002-0306-1971 ; 0000-0002-8371-3641</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S002211201900123X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Akiyama, Shinsaku</creatorcontrib><creatorcontrib>Waki, Yusuke</creatorcontrib><creatorcontrib>Okino, Shinya</creatorcontrib><creatorcontrib>Hanazaki, Hideshi</creatorcontrib><title>Unstable jets generated by a sphere descending in a very strongly stratified fluid</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The flow around a sphere descending at constant speed in a very strongly stratified fluid ( $Fr\lesssim 0.2$ ) is investigated by the shadowgraph method and particle image velocimetry. Unlike the flow under moderately strong stratification ( $Fr\gtrsim 0.2$ ), which supports a thin cylindrical jet, the flow generates an unstable jet, which often develops into turbulence. The transition from a stable jet to an unstable jet occurs for a sufficiently low Froude number $Fr$ that satisfies $Fr/Re&lt;1.57\times 10^{-3}$ . The Froude number $Fr$ here is in the range of $0.0157&lt;Fr&lt;0.157$ or lower, while the Reynolds number $Re$ is in the range of $10\lesssim Re\lesssim 100$ for which the homogeneous fluid shows steady and axisymmetric flows. Since the radius of the jet can be estimated by the primitive length scale of the stratified fluid, i.e. $l_{\unicode[STIX]{x1D708}}^{\ast }=\sqrt{\unicode[STIX]{x1D708}^{\ast }/N^{\ast }}$ or $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=\sqrt{Fr/2Re}$ , this predicts that the jet becomes unstable when it becomes thinner than approximately $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=0.028$ , where $N^{\ast }$ is the Brunt–Väisälä frequency, $a^{\ast }$ the radius of the sphere and $\unicode[STIX]{x1D708}^{\ast }$ the kinematic viscosity of the fluid. The instability begins when the boundary-layer thickness becomes thin, and the disturbances generated by shear instabilities would be transferred into the jet. When the flow is marginally unstable, two unstable states, i.e. a meandering jet and a turbulent jet, can appear. The meandering jet is thin with a high vertical velocity, while the turbulent jet is broad with a much smaller velocity. The meandering jet may persist for a long time, or develop into a turbulent jet in a short time. When the instability is sufficiently strong, only the turbulent jet could be observed.</description><subject>Brunt-Vaisala frequency</subject><subject>Carbon</subject><subject>Density stratification</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Froude number</subject><subject>Instability</subject><subject>Investigations</subject><subject>JFM Papers</subject><subject>Kelvin-Helmholtz instability</subject><subject>Kinematic viscosity</subject><subject>Laboratories</subject><subject>Meandering</subject><subject>Particle image velocimetry</subject><subject>Plankton</subject><subject>Reynolds number</subject><subject>Salinity</subject><subject>Stratification</subject><subject>Thickness</subject><subject>Turbulence</subject><subject>Turbulent jets</subject><subject>Velocity</subject><subject>Velocity measurement</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkjZtjrL4BYIg7jkkzaS2dLtr0hX235t1F7x4mmF45h3mIeSaQc6AVXe9X-UcmMoZFydkxgqpskoW5SmZAXCeMcbhnFzE2AMwAaqakfflGCdjB6Q9TpG2OGIwEzpqd9TQuPnEgNRhbHB03djSbkzjbww7GqewHtvhtzFT57u05Idt5y7JmTdDxKtjnZPl48PH4jl7fXt6Wdy_Zo2Q9ZQxVQorKynBN9xWrGEOoGxqJcF5yVlplXC8LMAW6KvaS4V1Zcv0ZymcNCDm5OaQuwnrry3GSffrbRjTSc05kylYqD11e6CasI4xoNeb0K1M2GkGem9NJ2t6b00nawnPj7hZ2dC5Fv9S_134AYFhbg0</recordid><startdate>20190525</startdate><enddate>20190525</enddate><creator>Akiyama, Shinsaku</creator><creator>Waki, Yusuke</creator><creator>Okino, Shinya</creator><creator>Hanazaki, Hideshi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-0306-1971</orcidid><orcidid>https://orcid.org/0000-0002-8371-3641</orcidid></search><sort><creationdate>20190525</creationdate><title>Unstable jets generated by a sphere descending in a very strongly stratified fluid</title><author>Akiyama, Shinsaku ; Waki, Yusuke ; Okino, Shinya ; Hanazaki, Hideshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1953b67660fc2b71c1d005c8960df6215b93d2540b4ef78f69e87b501753d6a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Brunt-Vaisala frequency</topic><topic>Carbon</topic><topic>Density stratification</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Froude number</topic><topic>Instability</topic><topic>Investigations</topic><topic>JFM Papers</topic><topic>Kelvin-Helmholtz instability</topic><topic>Kinematic viscosity</topic><topic>Laboratories</topic><topic>Meandering</topic><topic>Particle image velocimetry</topic><topic>Plankton</topic><topic>Reynolds number</topic><topic>Salinity</topic><topic>Stratification</topic><topic>Thickness</topic><topic>Turbulence</topic><topic>Turbulent jets</topic><topic>Velocity</topic><topic>Velocity measurement</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akiyama, Shinsaku</creatorcontrib><creatorcontrib>Waki, Yusuke</creatorcontrib><creatorcontrib>Okino, Shinya</creatorcontrib><creatorcontrib>Hanazaki, Hideshi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akiyama, Shinsaku</au><au>Waki, Yusuke</au><au>Okino, Shinya</au><au>Hanazaki, Hideshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unstable jets generated by a sphere descending in a very strongly stratified fluid</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2019-05-25</date><risdate>2019</risdate><volume>867</volume><spage>26</spage><epage>44</epage><pages>26-44</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The flow around a sphere descending at constant speed in a very strongly stratified fluid ( $Fr\lesssim 0.2$ ) is investigated by the shadowgraph method and particle image velocimetry. Unlike the flow under moderately strong stratification ( $Fr\gtrsim 0.2$ ), which supports a thin cylindrical jet, the flow generates an unstable jet, which often develops into turbulence. The transition from a stable jet to an unstable jet occurs for a sufficiently low Froude number $Fr$ that satisfies $Fr/Re&lt;1.57\times 10^{-3}$ . The Froude number $Fr$ here is in the range of $0.0157&lt;Fr&lt;0.157$ or lower, while the Reynolds number $Re$ is in the range of $10\lesssim Re\lesssim 100$ for which the homogeneous fluid shows steady and axisymmetric flows. Since the radius of the jet can be estimated by the primitive length scale of the stratified fluid, i.e. $l_{\unicode[STIX]{x1D708}}^{\ast }=\sqrt{\unicode[STIX]{x1D708}^{\ast }/N^{\ast }}$ or $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=\sqrt{Fr/2Re}$ , this predicts that the jet becomes unstable when it becomes thinner than approximately $l_{\unicode[STIX]{x1D708}}^{\ast }/2a^{\ast }=0.028$ , where $N^{\ast }$ is the Brunt–Väisälä frequency, $a^{\ast }$ the radius of the sphere and $\unicode[STIX]{x1D708}^{\ast }$ the kinematic viscosity of the fluid. The instability begins when the boundary-layer thickness becomes thin, and the disturbances generated by shear instabilities would be transferred into the jet. When the flow is marginally unstable, two unstable states, i.e. a meandering jet and a turbulent jet, can appear. The meandering jet is thin with a high vertical velocity, while the turbulent jet is broad with a much smaller velocity. The meandering jet may persist for a long time, or develop into a turbulent jet in a short time. When the instability is sufficiently strong, only the turbulent jet could be observed.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.123</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0306-1971</orcidid><orcidid>https://orcid.org/0000-0002-8371-3641</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-05, Vol.867, p.26-44
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2216660390
source Cambridge University Press Journals Complete
subjects Brunt-Vaisala frequency
Carbon
Density stratification
Fluid dynamics
Fluid flow
Froude number
Instability
Investigations
JFM Papers
Kelvin-Helmholtz instability
Kinematic viscosity
Laboratories
Meandering
Particle image velocimetry
Plankton
Reynolds number
Salinity
Stratification
Thickness
Turbulence
Turbulent jets
Velocity
Velocity measurement
Viscosity
title Unstable jets generated by a sphere descending in a very strongly stratified fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unstable%20jets%20generated%20by%20a%20sphere%20descending%20in%20a%20very%20strongly%20stratified%20fluid&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Akiyama,%20Shinsaku&rft.date=2019-05-25&rft.volume=867&rft.spage=26&rft.epage=44&rft.pages=26-44&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.123&rft_dat=%3Cproquest_cross%3E2216660390%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216660390&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2019_123&rfr_iscdi=true