Application of the compressible -dependent rheology to chute and shear flow instabilities
We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical d...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2019-04, Vol.864, p.1026-1057 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1057 |
---|---|
container_issue | |
container_start_page | 1026 |
container_title | Journal of fluid mechanics |
container_volume | 864 |
creator | Fannon, J. S. Moyles, I. R. Fowler, A. C. |
description | We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible
$\unicode[STIX]{x1D707}(I)$
rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model. |
doi_str_mv | 10.1017/jfm.2019.43 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216660374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216660374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsr_0DApUzNS9KksyzFLyi40YWrkMm8OCnTyZikSP-9U3R1N4d7L4eQW2ALYKAfdn6_4AzqhRRnZAZS1ZVWcnlOZoxxXgFwdkmuct4xBoLVekY-1-PYB2dLiAONnpYOqYv7MWHOoemRVi2OOLQ4FJo6jH38OtISqesOBakdWpo7tIn6Pv7QMORim9CHEjBfkwtv-4w3_zknH0-P75uXavv2_LpZbysHUoiqlbxWbsU5th5kowGEr8WKK9mib63woJdC1RqY0lg3S4ZS63p6b52ynjsxJ3d_vWOK3wfMxeziIQ3TpOEclFJMaDlR93-USzHnhN6MKextOhpg5uTOTO7MyZ2ZXv0Cq2xhsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216660374</pqid></control><display><type>article</type><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><source>Cambridge University Press Journals Complete</source><creator>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</creator><creatorcontrib>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</creatorcontrib><description>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible
$\unicode[STIX]{x1D707}(I)$
rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.43</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Beads ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Dimensional analysis ; Discrete element method ; Flow stability ; Glass beads ; Granular materials ; Gravity ; Instability ; Kelvin-Helmholtz instability ; Mathematical models ; Properties ; Rheological properties ; Rheology ; Shear flow ; Stability analysis ; Velocity</subject><ispartof>Journal of fluid mechanics, 2019-04, Vol.864, p.1026-1057</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</citedby><cites>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</cites><orcidid>0000-0001-8379-4923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fannon, J. S.</creatorcontrib><creatorcontrib>Moyles, I. R.</creatorcontrib><creatorcontrib>Fowler, A. C.</creatorcontrib><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><title>Journal of fluid mechanics</title><description>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible
$\unicode[STIX]{x1D707}(I)$
rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</description><subject>Beads</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dimensional analysis</subject><subject>Discrete element method</subject><subject>Flow stability</subject><subject>Glass beads</subject><subject>Granular materials</subject><subject>Gravity</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Mathematical models</subject><subject>Properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear flow</subject><subject>Stability analysis</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoWKsr_0DApUzNS9KksyzFLyi40YWrkMm8OCnTyZikSP-9U3R1N4d7L4eQW2ALYKAfdn6_4AzqhRRnZAZS1ZVWcnlOZoxxXgFwdkmuct4xBoLVekY-1-PYB2dLiAONnpYOqYv7MWHOoemRVi2OOLQ4FJo6jH38OtISqesOBakdWpo7tIn6Pv7QMORim9CHEjBfkwtv-4w3_zknH0-P75uXavv2_LpZbysHUoiqlbxWbsU5th5kowGEr8WKK9mib63woJdC1RqY0lg3S4ZS63p6b52ynjsxJ3d_vWOK3wfMxeziIQ3TpOEclFJMaDlR93-USzHnhN6MKextOhpg5uTOTO7MyZ2ZXv0Cq2xhsQ</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Fannon, J. S.</creator><creator>Moyles, I. R.</creator><creator>Fowler, A. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8379-4923</orcidid></search><sort><creationdate>20190410</creationdate><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><author>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beads</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dimensional analysis</topic><topic>Discrete element method</topic><topic>Flow stability</topic><topic>Glass beads</topic><topic>Granular materials</topic><topic>Gravity</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Mathematical models</topic><topic>Properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear flow</topic><topic>Stability analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fannon, J. S.</creatorcontrib><creatorcontrib>Moyles, I. R.</creatorcontrib><creatorcontrib>Fowler, A. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fannon, J. S.</au><au>Moyles, I. R.</au><au>Fowler, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the compressible -dependent rheology to chute and shear flow instabilities</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>864</volume><spage>1026</spage><epage>1057</epage><pages>1026-1057</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible
$\unicode[STIX]{x1D707}(I)$
rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.43</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8379-4923</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2019-04, Vol.864, p.1026-1057 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2216660374 |
source | Cambridge University Press Journals Complete |
subjects | Beads Compressibility Computational fluid dynamics Computer simulation Dimensional analysis Discrete element method Flow stability Glass beads Granular materials Gravity Instability Kelvin-Helmholtz instability Mathematical models Properties Rheological properties Rheology Shear flow Stability analysis Velocity |
title | Application of the compressible -dependent rheology to chute and shear flow instabilities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20compressible%20-dependent%20rheology%20to%20chute%20and%20shear%20flow%20instabilities&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fannon,%20J.%20S.&rft.date=2019-04-10&rft.volume=864&rft.spage=1026&rft.epage=1057&rft.pages=1026-1057&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.43&rft_dat=%3Cproquest_cross%3E2216660374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216660374&rft_id=info:pmid/&rfr_iscdi=true |