Application of the compressible -dependent rheology to chute and shear flow instabilities

We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2019-04, Vol.864, p.1026-1057
Hauptverfasser: Fannon, J. S., Moyles, I. R., Fowler, A. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1057
container_issue
container_start_page 1026
container_title Journal of fluid mechanics
container_volume 864
creator Fannon, J. S.
Moyles, I. R.
Fowler, A. C.
description We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.
doi_str_mv 10.1017/jfm.2019.43
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216660374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216660374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsr_0DApUzNS9KksyzFLyi40YWrkMm8OCnTyZikSP-9U3R1N4d7L4eQW2ALYKAfdn6_4AzqhRRnZAZS1ZVWcnlOZoxxXgFwdkmuct4xBoLVekY-1-PYB2dLiAONnpYOqYv7MWHOoemRVi2OOLQ4FJo6jH38OtISqesOBakdWpo7tIn6Pv7QMORim9CHEjBfkwtv-4w3_zknH0-P75uXavv2_LpZbysHUoiqlbxWbsU5th5kowGEr8WKK9mib63woJdC1RqY0lg3S4ZS63p6b52ynjsxJ3d_vWOK3wfMxeziIQ3TpOEclFJMaDlR93-USzHnhN6MKextOhpg5uTOTO7MyZ2ZXv0Cq2xhsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216660374</pqid></control><display><type>article</type><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><source>Cambridge University Press Journals Complete</source><creator>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</creator><creatorcontrib>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</creatorcontrib><description>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2019.43</identifier><language>eng</language><publisher>Cambridge: Cambridge University Press</publisher><subject>Beads ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Dimensional analysis ; Discrete element method ; Flow stability ; Glass beads ; Granular materials ; Gravity ; Instability ; Kelvin-Helmholtz instability ; Mathematical models ; Properties ; Rheological properties ; Rheology ; Shear flow ; Stability analysis ; Velocity</subject><ispartof>Journal of fluid mechanics, 2019-04, Vol.864, p.1026-1057</ispartof><rights>2019 Cambridge University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</citedby><cites>FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</cites><orcidid>0000-0001-8379-4923</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Fannon, J. S.</creatorcontrib><creatorcontrib>Moyles, I. R.</creatorcontrib><creatorcontrib>Fowler, A. C.</creatorcontrib><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><title>Journal of fluid mechanics</title><description>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</description><subject>Beads</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Dimensional analysis</subject><subject>Discrete element method</subject><subject>Flow stability</subject><subject>Glass beads</subject><subject>Granular materials</subject><subject>Gravity</subject><subject>Instability</subject><subject>Kelvin-Helmholtz instability</subject><subject>Mathematical models</subject><subject>Properties</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear flow</subject><subject>Stability analysis</subject><subject>Velocity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1LAzEURYMoWKsr_0DApUzNS9KksyzFLyi40YWrkMm8OCnTyZikSP-9U3R1N4d7L4eQW2ALYKAfdn6_4AzqhRRnZAZS1ZVWcnlOZoxxXgFwdkmuct4xBoLVekY-1-PYB2dLiAONnpYOqYv7MWHOoemRVi2OOLQ4FJo6jH38OtISqesOBakdWpo7tIn6Pv7QMORim9CHEjBfkwtv-4w3_zknH0-P75uXavv2_LpZbysHUoiqlbxWbsU5th5kowGEr8WKK9mib63woJdC1RqY0lg3S4ZS63p6b52ynjsxJ3d_vWOK3wfMxeziIQ3TpOEclFJMaDlR93-USzHnhN6MKextOhpg5uTOTO7MyZ2ZXv0Cq2xhsQ</recordid><startdate>20190410</startdate><enddate>20190410</enddate><creator>Fannon, J. S.</creator><creator>Moyles, I. R.</creator><creator>Fowler, A. C.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0001-8379-4923</orcidid></search><sort><creationdate>20190410</creationdate><title>Application of the compressible -dependent rheology to chute and shear flow instabilities</title><author>Fannon, J. S. ; Moyles, I. R. ; Fowler, A. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1433-d4296c822edf14b7113f938264defda3f17536971067e9b50e4779130ac6af2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Beads</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Dimensional analysis</topic><topic>Discrete element method</topic><topic>Flow stability</topic><topic>Glass beads</topic><topic>Granular materials</topic><topic>Gravity</topic><topic>Instability</topic><topic>Kelvin-Helmholtz instability</topic><topic>Mathematical models</topic><topic>Properties</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear flow</topic><topic>Stability analysis</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fannon, J. S.</creatorcontrib><creatorcontrib>Moyles, I. R.</creatorcontrib><creatorcontrib>Fowler, A. C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fannon, J. S.</au><au>Moyles, I. R.</au><au>Fowler, A. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the compressible -dependent rheology to chute and shear flow instabilities</atitle><jtitle>Journal of fluid mechanics</jtitle><date>2019-04-10</date><risdate>2019</risdate><volume>864</volume><spage>1026</spage><epage>1057</epage><pages>1026-1057</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>We consider the instability properties of dense granular flow in inclined plane and plane shear geometries as tests for the compressible inertial-dependent rheology. The model, which is a recent generalisation of the incompressible $\unicode[STIX]{x1D707}(I)$ rheology, constitutes a hydrodynamical description of dense granular flow which allows for variability in the solids volume fraction. We perform a full linear stability analysis of the model and compare its predictions to existing experimental data for glass beads on an inclined plane and discrete element simulations of plane shear in the absence of gravity. In the case of the former, we demonstrate that the compressible model can quantitatively predict the instability properties observed experimentally, and, in particular, we find that it performs better than its incompressible counterpart. For the latter, the qualitative behaviour of the plane shear instability is also well captured by the compressible model.</abstract><cop>Cambridge</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2019.43</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-8379-4923</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2019-04, Vol.864, p.1026-1057
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2216660374
source Cambridge University Press Journals Complete
subjects Beads
Compressibility
Computational fluid dynamics
Computer simulation
Dimensional analysis
Discrete element method
Flow stability
Glass beads
Granular materials
Gravity
Instability
Kelvin-Helmholtz instability
Mathematical models
Properties
Rheological properties
Rheology
Shear flow
Stability analysis
Velocity
title Application of the compressible -dependent rheology to chute and shear flow instabilities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T07%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20compressible%20-dependent%20rheology%20to%20chute%20and%20shear%20flow%20instabilities&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Fannon,%20J.%20S.&rft.date=2019-04-10&rft.volume=864&rft.spage=1026&rft.epage=1057&rft.pages=1026-1057&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2019.43&rft_dat=%3Cproquest_cross%3E2216660374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216660374&rft_id=info:pmid/&rfr_iscdi=true