Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks

[Display omitted] In the present study frequency dependent effective spring boundary conditions are formulated to simulate wave propagation through an interface with distributions of micro-cracks of various sizes. The frequency dependent formulae for spring stiffnesses are obtained for circular crac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2019-06, Vol.165, p.115-126
Hauptverfasser: Golub, Mikhail V., Doroshenko, Olga V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 126
container_issue
container_start_page 115
container_title International journal of solids and structures
container_volume 165
creator Golub, Mikhail V.
Doroshenko, Olga V.
description [Display omitted] In the present study frequency dependent effective spring boundary conditions are formulated to simulate wave propagation through an interface with distributions of micro-cracks of various sizes. The frequency dependent formulae for spring stiffnesses are obtained for circular cracks employing the boundary integral equation method, the ensemble averaging technique and Betti’s reciprocity theorem. The frequency dependent analytical relations for normal and tangential spring stiffnesses are expressed in terms of the elastic properties of contacting materials and properties of distributed cracks. In the case of equally sized cracks, the formulae for stiffnesses have an analytical form. The provided analysis of the influence of frequency on spring stiffnesses shows that for each crack size a number of sharp and narrow peaks can be observed in certain frequency ranges. The novelty of this study also lies in the consideration of different sized interface cracks. The influence of the standard deviation of radii of circular cracks on spring stiffnesses is analysed using the lognormal distribution. It is shown that there is a relatively low influence of size variation on spring stiffnesses, if the standard deviation in the distribution is not extremely large.
doi_str_mv 10.1016/j.ijsolstr.2019.02.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216280115</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768319300666</els_id><sourcerecordid>2216280115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-a89c3eff5b8212baae868965097d076aa0dc6e4cba55bffa0800df91e1b427593</originalsourceid><addsrcrecordid>eNqFkMFO3TAQRa0KpD6gv4AssU4YOy-OsytCFCohddOuLcceg9MkftgOqH_RT8bRo-uuLI3OveM5hFwyqBkwcT3WfkxhSjnWHFhfA68B-CeyY7LrK8724oTsygSqTsjmMzlLaQSAfdPDjvy9cw5N9q9I0yH65YkOYV2sjn-oCYv12YclURcinYPFadqIN13oHPWSZp9SAWh-jmF9eqa6hOZDSD4jffN5GxTMhplaX_7nh3Xro8FRv2SMThukxkezTjpSE7X5nS7IqdNTwi8f7zn59e3u5-1D9fjj_vvtzWNlGilzpWVvGnSuHSRnfNAapZC9aKHvLHRCa7BG4N4Mum0H5zRIAOt6hmzY867tm3Nydew9xPCyYspqDGtcykrFORNcAmNtocSRMjGkFNGpImkudhQDtdlXo_pnX232FXBVXJfg12MQyw2vHqNKxuNi0PpYfCsb_P8q3gFZNJaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216280115</pqid></control><display><type>article</type><title>Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Golub, Mikhail V. ; Doroshenko, Olga V.</creator><creatorcontrib>Golub, Mikhail V. ; Doroshenko, Olga V.</creatorcontrib><description>[Display omitted] In the present study frequency dependent effective spring boundary conditions are formulated to simulate wave propagation through an interface with distributions of micro-cracks of various sizes. The frequency dependent formulae for spring stiffnesses are obtained for circular cracks employing the boundary integral equation method, the ensemble averaging technique and Betti’s reciprocity theorem. The frequency dependent analytical relations for normal and tangential spring stiffnesses are expressed in terms of the elastic properties of contacting materials and properties of distributed cracks. In the case of equally sized cracks, the formulae for stiffnesses have an analytical form. The provided analysis of the influence of frequency on spring stiffnesses shows that for each crack size a number of sharp and narrow peaks can be observed in certain frequency ranges. The novelty of this study also lies in the consideration of different sized interface cracks. The influence of the standard deviation of radii of circular cracks on spring stiffnesses is analysed using the lognormal distribution. It is shown that there is a relatively low influence of size variation on spring stiffnesses, if the standard deviation in the distribution is not extremely large.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2019.02.002</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Boundary conditions ; Boundary element method ; Boundary integral method ; Circularity ; Computer simulation ; Crack propagation ; Cracks ; Damaged interface ; Diffraction ; Dissimilar media ; Distributed spring ; Effective boundary condition ; Elastic properties ; Elastic waves crack ; Frequency analysis ; Frequency ranges ; Imperfect contact ; Integral equations ; Interfacial cracks ; Microcracks ; Reciprocity ; Reciprocity theorem ; Standard deviation ; Stiffness ; Wave propagation</subject><ispartof>International journal of solids and structures, 2019-06, Vol.165, p.115-126</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-a89c3eff5b8212baae868965097d076aa0dc6e4cba55bffa0800df91e1b427593</citedby><cites>FETCH-LOGICAL-c388t-a89c3eff5b8212baae868965097d076aa0dc6e4cba55bffa0800df91e1b427593</cites><orcidid>0000-0003-4927-9623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2019.02.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Golub, Mikhail V.</creatorcontrib><creatorcontrib>Doroshenko, Olga V.</creatorcontrib><title>Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks</title><title>International journal of solids and structures</title><description>[Display omitted] In the present study frequency dependent effective spring boundary conditions are formulated to simulate wave propagation through an interface with distributions of micro-cracks of various sizes. The frequency dependent formulae for spring stiffnesses are obtained for circular cracks employing the boundary integral equation method, the ensemble averaging technique and Betti’s reciprocity theorem. The frequency dependent analytical relations for normal and tangential spring stiffnesses are expressed in terms of the elastic properties of contacting materials and properties of distributed cracks. In the case of equally sized cracks, the formulae for stiffnesses have an analytical form. The provided analysis of the influence of frequency on spring stiffnesses shows that for each crack size a number of sharp and narrow peaks can be observed in certain frequency ranges. The novelty of this study also lies in the consideration of different sized interface cracks. The influence of the standard deviation of radii of circular cracks on spring stiffnesses is analysed using the lognormal distribution. It is shown that there is a relatively low influence of size variation on spring stiffnesses, if the standard deviation in the distribution is not extremely large.</description><subject>Boundary conditions</subject><subject>Boundary element method</subject><subject>Boundary integral method</subject><subject>Circularity</subject><subject>Computer simulation</subject><subject>Crack propagation</subject><subject>Cracks</subject><subject>Damaged interface</subject><subject>Diffraction</subject><subject>Dissimilar media</subject><subject>Distributed spring</subject><subject>Effective boundary condition</subject><subject>Elastic properties</subject><subject>Elastic waves crack</subject><subject>Frequency analysis</subject><subject>Frequency ranges</subject><subject>Imperfect contact</subject><subject>Integral equations</subject><subject>Interfacial cracks</subject><subject>Microcracks</subject><subject>Reciprocity</subject><subject>Reciprocity theorem</subject><subject>Standard deviation</subject><subject>Stiffness</subject><subject>Wave propagation</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3TAQRa0KpD6gv4AssU4YOy-OsytCFCohddOuLcceg9MkftgOqH_RT8bRo-uuLI3OveM5hFwyqBkwcT3WfkxhSjnWHFhfA68B-CeyY7LrK8724oTsygSqTsjmMzlLaQSAfdPDjvy9cw5N9q9I0yH65YkOYV2sjn-oCYv12YclURcinYPFadqIN13oHPWSZp9SAWh-jmF9eqa6hOZDSD4jffN5GxTMhplaX_7nh3Xro8FRv2SMThukxkezTjpSE7X5nS7IqdNTwi8f7zn59e3u5-1D9fjj_vvtzWNlGilzpWVvGnSuHSRnfNAapZC9aKHvLHRCa7BG4N4Mum0H5zRIAOt6hmzY867tm3Nydew9xPCyYspqDGtcykrFORNcAmNtocSRMjGkFNGpImkudhQDtdlXo_pnX232FXBVXJfg12MQyw2vHqNKxuNi0PpYfCsb_P8q3gFZNJaE</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Golub, Mikhail V.</creator><creator>Doroshenko, Olga V.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4927-9623</orcidid></search><sort><creationdate>20190615</creationdate><title>Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks</title><author>Golub, Mikhail V. ; Doroshenko, Olga V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-a89c3eff5b8212baae868965097d076aa0dc6e4cba55bffa0800df91e1b427593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Boundary element method</topic><topic>Boundary integral method</topic><topic>Circularity</topic><topic>Computer simulation</topic><topic>Crack propagation</topic><topic>Cracks</topic><topic>Damaged interface</topic><topic>Diffraction</topic><topic>Dissimilar media</topic><topic>Distributed spring</topic><topic>Effective boundary condition</topic><topic>Elastic properties</topic><topic>Elastic waves crack</topic><topic>Frequency analysis</topic><topic>Frequency ranges</topic><topic>Imperfect contact</topic><topic>Integral equations</topic><topic>Interfacial cracks</topic><topic>Microcracks</topic><topic>Reciprocity</topic><topic>Reciprocity theorem</topic><topic>Standard deviation</topic><topic>Stiffness</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golub, Mikhail V.</creatorcontrib><creatorcontrib>Doroshenko, Olga V.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golub, Mikhail V.</au><au>Doroshenko, Olga V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks</atitle><jtitle>International journal of solids and structures</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>165</volume><spage>115</spage><epage>126</epage><pages>115-126</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>[Display omitted] In the present study frequency dependent effective spring boundary conditions are formulated to simulate wave propagation through an interface with distributions of micro-cracks of various sizes. The frequency dependent formulae for spring stiffnesses are obtained for circular cracks employing the boundary integral equation method, the ensemble averaging technique and Betti’s reciprocity theorem. The frequency dependent analytical relations for normal and tangential spring stiffnesses are expressed in terms of the elastic properties of contacting materials and properties of distributed cracks. In the case of equally sized cracks, the formulae for stiffnesses have an analytical form. The provided analysis of the influence of frequency on spring stiffnesses shows that for each crack size a number of sharp and narrow peaks can be observed in certain frequency ranges. The novelty of this study also lies in the consideration of different sized interface cracks. The influence of the standard deviation of radii of circular cracks on spring stiffnesses is analysed using the lognormal distribution. It is shown that there is a relatively low influence of size variation on spring stiffnesses, if the standard deviation in the distribution is not extremely large.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2019.02.002</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4927-9623</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2019-06, Vol.165, p.115-126
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_journals_2216280115
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Boundary conditions
Boundary element method
Boundary integral method
Circularity
Computer simulation
Crack propagation
Cracks
Damaged interface
Diffraction
Dissimilar media
Distributed spring
Effective boundary condition
Elastic properties
Elastic waves crack
Frequency analysis
Frequency ranges
Imperfect contact
Integral equations
Interfacial cracks
Microcracks
Reciprocity
Reciprocity theorem
Standard deviation
Stiffness
Wave propagation
title Effective spring boundary conditions for modelling wave transmission through a composite with a random distribution of interface circular cracks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A45%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20spring%20boundary%20conditions%20for%20modelling%20wave%20transmission%20through%20a%20composite%20with%20a%20random%20distribution%20of%20interface%20circular%20cracks&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Golub,%20Mikhail%20V.&rft.date=2019-06-15&rft.volume=165&rft.spage=115&rft.epage=126&rft.pages=115-126&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2019.02.002&rft_dat=%3Cproquest_cross%3E2216280115%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216280115&rft_id=info:pmid/&rft_els_id=S0020768319300666&rfr_iscdi=true