A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model

•Analytical solutions with emphasis on the role of interfacial nanolayers.•Detailed study of nanofluid volume fraction, thermal and shape properties effects.•Nanoparticles shape importance for the cooling due to higher thermal conductivity.•Nanolayer thickness ratio over the particle radius on heat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2019-06, Vol.135, p.548-560
Hauptverfasser: Benos, L.Th, Karvelas, E.G., Sarris, I.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560
container_issue
container_start_page 548
container_title International journal of heat and mass transfer
container_volume 135
creator Benos, L.Th
Karvelas, E.G.
Sarris, I.E.
description •Analytical solutions with emphasis on the role of interfacial nanolayers.•Detailed study of nanofluid volume fraction, thermal and shape properties effects.•Nanoparticles shape importance for the cooling due to higher thermal conductivity.•Nanolayer thickness ratio over the particle radius on heat transfer enhancement. The present study pertains to the laminar two-dimensional magnetohydrodynamic natural convection in a shallow cavity utilizing a Carbon Nanotube (CNT)-water nanofluid which is internally heated by volumetrically heat sources. The theoretical model comprehends the effect of the nanoparticle volume fraction and its size. Furthermore, the role of an interfacial nanolayer, which is adjacent to the solid particles, is taken into account as well as the shape of the latter. In a nutshell, increasing the concentration of the CNTs results in deceleration of the fluid flow and, thus, in deterioration of the heat transfer. Besides, the shape of the solid nanoparticles seems to be of great importance regarding the cooling process, since the elongation of them leads to bigger thermal conductivities that promotes conduction over convection heat transfer. Finally, the ratio of the nanolayer thickness over the radius of the particle influences the heat in the nanofluid and, as a consequence, the entire heat transfer. The asymptotic results appear to be particularly helpful for the understanding of such an interesting and fundamental problem which emerges in a lot of industrial applications.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.01.148
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216278943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018362033</els_id><sourcerecordid>2216278943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-b017169742e4a8ad25f12dabf66a5665c0699460cd7793b66e41ae92206387023</originalsourceid><addsrcrecordid>eNqNkcFu3CAQhlGVSt1s-w5IvfRiF7AXm1uiVZO0itpLekYsjLNYNrMFdqt9hz50cba3XHpCMB_fDPyEfOKs5ozLz2Ptxz2YPJuUcjQhDRBrwbiqGa95278hK953qhK8V1dkxRjvKtVw9o5cpzQuW9bKFflzS_MeMEL21kx0RgcTHTAup3Q2zwEy7s8uojsHM3tLg8nHWEiL4QQ2ewwUB2ro9vtT9dtkiIUIOExH76gPFuMBo8k-PBcmQsBTYRx9KK4pY6i2EVMql14avydvBzMl-PBvXZOfd1-etg_V44_7r9vbx8q2rMvVrgzPpepaAa3pjRObgQtndoOUZiPlxjKpVCuZdV2nmp2U0HIDSggmm75jolmTjxfvIeKvI6SsRzzGUFpqIbgUXa_aplA3F8ouM0YY9CH62cSz5kwvGehRv85ALxloxnXJoCi-XRRQXnPypZqsh2DB-Vg-Tzv0_y_7C3FcnvE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216278943</pqid></control><display><type>article</type><title>A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Benos, L.Th ; Karvelas, E.G. ; Sarris, I.E.</creator><creatorcontrib>Benos, L.Th ; Karvelas, E.G. ; Sarris, I.E.</creatorcontrib><description>•Analytical solutions with emphasis on the role of interfacial nanolayers.•Detailed study of nanofluid volume fraction, thermal and shape properties effects.•Nanoparticles shape importance for the cooling due to higher thermal conductivity.•Nanolayer thickness ratio over the particle radius on heat transfer enhancement. The present study pertains to the laminar two-dimensional magnetohydrodynamic natural convection in a shallow cavity utilizing a Carbon Nanotube (CNT)-water nanofluid which is internally heated by volumetrically heat sources. The theoretical model comprehends the effect of the nanoparticle volume fraction and its size. Furthermore, the role of an interfacial nanolayer, which is adjacent to the solid particles, is taken into account as well as the shape of the latter. In a nutshell, increasing the concentration of the CNTs results in deceleration of the fluid flow and, thus, in deterioration of the heat transfer. Besides, the shape of the solid nanoparticles seems to be of great importance regarding the cooling process, since the elongation of them leads to bigger thermal conductivities that promotes conduction over convection heat transfer. Finally, the ratio of the nanolayer thickness over the radius of the particle influences the heat in the nanofluid and, as a consequence, the entire heat transfer. The asymptotic results appear to be particularly helpful for the understanding of such an interesting and fundamental problem which emerges in a lot of industrial applications.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.01.148</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Carbon nanotubes ; CNT-water nanofluid ; Computational fluid dynamics ; Conduction heating ; Deceleration ; Elongation ; Fluid flow ; Free convection ; Heat sources ; Heat transfer ; Industrial applications ; Interfacial nanolayer ; Magnetohydrodynamic natural convection ; Magnetohydrodynamics ; Nanofluids ; Nanoparticle shape ; Nanoparticles ; Thickness ; Two dimensional models</subject><ispartof>International journal of heat and mass transfer, 2019-06, Vol.135, p.548-560</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-b017169742e4a8ad25f12dabf66a5665c0699460cd7793b66e41ae92206387023</citedby><cites>FETCH-LOGICAL-c407t-b017169742e4a8ad25f12dabf66a5665c0699460cd7793b66e41ae92206387023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.01.148$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Benos, L.Th</creatorcontrib><creatorcontrib>Karvelas, E.G.</creatorcontrib><creatorcontrib>Sarris, I.E.</creatorcontrib><title>A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model</title><title>International journal of heat and mass transfer</title><description>•Analytical solutions with emphasis on the role of interfacial nanolayers.•Detailed study of nanofluid volume fraction, thermal and shape properties effects.•Nanoparticles shape importance for the cooling due to higher thermal conductivity.•Nanolayer thickness ratio over the particle radius on heat transfer enhancement. The present study pertains to the laminar two-dimensional magnetohydrodynamic natural convection in a shallow cavity utilizing a Carbon Nanotube (CNT)-water nanofluid which is internally heated by volumetrically heat sources. The theoretical model comprehends the effect of the nanoparticle volume fraction and its size. Furthermore, the role of an interfacial nanolayer, which is adjacent to the solid particles, is taken into account as well as the shape of the latter. In a nutshell, increasing the concentration of the CNTs results in deceleration of the fluid flow and, thus, in deterioration of the heat transfer. Besides, the shape of the solid nanoparticles seems to be of great importance regarding the cooling process, since the elongation of them leads to bigger thermal conductivities that promotes conduction over convection heat transfer. Finally, the ratio of the nanolayer thickness over the radius of the particle influences the heat in the nanofluid and, as a consequence, the entire heat transfer. The asymptotic results appear to be particularly helpful for the understanding of such an interesting and fundamental problem which emerges in a lot of industrial applications.</description><subject>Carbon nanotubes</subject><subject>CNT-water nanofluid</subject><subject>Computational fluid dynamics</subject><subject>Conduction heating</subject><subject>Deceleration</subject><subject>Elongation</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Industrial applications</subject><subject>Interfacial nanolayer</subject><subject>Magnetohydrodynamic natural convection</subject><subject>Magnetohydrodynamics</subject><subject>Nanofluids</subject><subject>Nanoparticle shape</subject><subject>Nanoparticles</subject><subject>Thickness</subject><subject>Two dimensional models</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkcFu3CAQhlGVSt1s-w5IvfRiF7AXm1uiVZO0itpLekYsjLNYNrMFdqt9hz50cba3XHpCMB_fDPyEfOKs5ozLz2Ptxz2YPJuUcjQhDRBrwbiqGa95278hK953qhK8V1dkxRjvKtVw9o5cpzQuW9bKFflzS_MeMEL21kx0RgcTHTAup3Q2zwEy7s8uojsHM3tLg8nHWEiL4QQ2ewwUB2ro9vtT9dtkiIUIOExH76gPFuMBo8k-PBcmQsBTYRx9KK4pY6i2EVMql14avydvBzMl-PBvXZOfd1-etg_V44_7r9vbx8q2rMvVrgzPpepaAa3pjRObgQtndoOUZiPlxjKpVCuZdV2nmp2U0HIDSggmm75jolmTjxfvIeKvI6SsRzzGUFpqIbgUXa_aplA3F8ouM0YY9CH62cSz5kwvGehRv85ALxloxnXJoCi-XRRQXnPypZqsh2DB-Vg-Tzv0_y_7C3FcnvE</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Benos, L.Th</creator><creator>Karvelas, E.G.</creator><creator>Sarris, I.E.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20190601</creationdate><title>A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model</title><author>Benos, L.Th ; Karvelas, E.G. ; Sarris, I.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-b017169742e4a8ad25f12dabf66a5665c0699460cd7793b66e41ae92206387023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon nanotubes</topic><topic>CNT-water nanofluid</topic><topic>Computational fluid dynamics</topic><topic>Conduction heating</topic><topic>Deceleration</topic><topic>Elongation</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Industrial applications</topic><topic>Interfacial nanolayer</topic><topic>Magnetohydrodynamic natural convection</topic><topic>Magnetohydrodynamics</topic><topic>Nanofluids</topic><topic>Nanoparticle shape</topic><topic>Nanoparticles</topic><topic>Thickness</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benos, L.Th</creatorcontrib><creatorcontrib>Karvelas, E.G.</creatorcontrib><creatorcontrib>Sarris, I.E.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benos, L.Th</au><au>Karvelas, E.G.</au><au>Sarris, I.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>135</volume><spage>548</spage><epage>560</epage><pages>548-560</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Analytical solutions with emphasis on the role of interfacial nanolayers.•Detailed study of nanofluid volume fraction, thermal and shape properties effects.•Nanoparticles shape importance for the cooling due to higher thermal conductivity.•Nanolayer thickness ratio over the particle radius on heat transfer enhancement. The present study pertains to the laminar two-dimensional magnetohydrodynamic natural convection in a shallow cavity utilizing a Carbon Nanotube (CNT)-water nanofluid which is internally heated by volumetrically heat sources. The theoretical model comprehends the effect of the nanoparticle volume fraction and its size. Furthermore, the role of an interfacial nanolayer, which is adjacent to the solid particles, is taken into account as well as the shape of the latter. In a nutshell, increasing the concentration of the CNTs results in deceleration of the fluid flow and, thus, in deterioration of the heat transfer. Besides, the shape of the solid nanoparticles seems to be of great importance regarding the cooling process, since the elongation of them leads to bigger thermal conductivities that promotes conduction over convection heat transfer. Finally, the ratio of the nanolayer thickness over the radius of the particle influences the heat in the nanofluid and, as a consequence, the entire heat transfer. The asymptotic results appear to be particularly helpful for the understanding of such an interesting and fundamental problem which emerges in a lot of industrial applications.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.01.148</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-06, Vol.135, p.548-560
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2216278943
source ScienceDirect Journals (5 years ago - present)
subjects Carbon nanotubes
CNT-water nanofluid
Computational fluid dynamics
Conduction heating
Deceleration
Elongation
Fluid flow
Free convection
Heat sources
Heat transfer
Industrial applications
Interfacial nanolayer
Magnetohydrodynamic natural convection
Magnetohydrodynamics
Nanofluids
Nanoparticle shape
Nanoparticles
Thickness
Two dimensional models
title A theoretical model for the magnetohydrodynamic natural convection of a CNT-water nanofluid incorporating a renovated Hamilton-Crosser model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20model%20for%20the%20magnetohydrodynamic%20natural%20convection%20of%20a%20CNT-water%20nanofluid%20incorporating%20a%20renovated%20Hamilton-Crosser%20model&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Benos,%20L.Th&rft.date=2019-06-01&rft.volume=135&rft.spage=548&rft.epage=560&rft.pages=548-560&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.01.148&rft_dat=%3Cproquest_cross%3E2216278943%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216278943&rft_id=info:pmid/&rft_els_id=S0017931018362033&rfr_iscdi=true