Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles

We reformulated the self-consistent Kröner scheme to calculate thermal conductivities of aggregates of anisotropic particles, including polycrystals. The only assumption of this scheme is that all the particles have the same shape and, therefore, the average temperature gradient in a particle coinci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2019-03, Vol.136, p.67-77
Hauptverfasser: Sevostianov, Igor, Talipov, Marat R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue
container_start_page 67
container_title International journal of engineering science
container_volume 136
creator Sevostianov, Igor
Talipov, Marat R.
description We reformulated the self-consistent Kröner scheme to calculate thermal conductivities of aggregates of anisotropic particles, including polycrystals. The only assumption of this scheme is that all the particles have the same shape and, therefore, the average temperature gradient in a particle coincides with the remotely applied. We specified the expression for overall conductivity for different cases of particles shape and orientation distributions. The accuracy of the approach is verified on experimental and computational data available in literature.
doi_str_mv 10.1016/j.ijengsci.2019.02.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216277053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722519301272</els_id><sourcerecordid>2216277053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-f78c1de500501470f438616b33bac1dc2ac76222db9164bd4069cee6826257b13</originalsourceid><addsrcrecordid>eNqFkEtu2zAQhomgAeI6uUJAIGspQ0omrV0Ko48gAbJp1wRFjWwKsqgOaQO-WC-Qi4WG23VXM4P5_3l8jN0LKAUI9TiUfsBpG50vJYimBFkCiCu2EGvdFFI0-hNbAEgotJSrG_Y5xgEAVlXTLFh8ofc_ExLfY9qFjveBeNoh7e3Ic4ojukTe5cqFqTu45I8-nXjo-RzGk6NTTHaM3E4dD2cft9st4dYmjGeRnXwMicLsHZ8tJe9GjLfsus8mvPsbl-zXt68_Nz-K17fvz5svr4WrakhFr9dOdLjKp4KoNfR1tVZCtVXV2txw0jqtpJRd2whVt10NqnGIai2VXOlWVEv2cJk7U_h9wJjMEA405ZVGSqGk1hlCVqmLylGIkbA3M_m9pZMRYM6AzWD-ATZnwAakyYCz8elixPzD0SOZrMDJYecpUzNd8P8b8QH2MYpS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216277053</pqid></control><display><type>article</type><title>Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sevostianov, Igor ; Talipov, Marat R.</creator><creatorcontrib>Sevostianov, Igor ; Talipov, Marat R.</creatorcontrib><description>We reformulated the self-consistent Kröner scheme to calculate thermal conductivities of aggregates of anisotropic particles, including polycrystals. The only assumption of this scheme is that all the particles have the same shape and, therefore, the average temperature gradient in a particle coincides with the remotely applied. We specified the expression for overall conductivity for different cases of particles shape and orientation distributions. The accuracy of the approach is verified on experimental and computational data available in literature.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2019.02.001</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aggregates ; Anisotropy ; Conductivity ; Effective conductivity ; Electrical resistivity ; Heat conductivity ; Polycrystal ; Polycrystals ; Temperature gradients</subject><ispartof>International journal of engineering science, 2019-03, Vol.136, p.67-77</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-f78c1de500501470f438616b33bac1dc2ac76222db9164bd4069cee6826257b13</citedby><cites>FETCH-LOGICAL-c340t-f78c1de500501470f438616b33bac1dc2ac76222db9164bd4069cee6826257b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2019.02.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sevostianov, Igor</creatorcontrib><creatorcontrib>Talipov, Marat R.</creatorcontrib><title>Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles</title><title>International journal of engineering science</title><description>We reformulated the self-consistent Kröner scheme to calculate thermal conductivities of aggregates of anisotropic particles, including polycrystals. The only assumption of this scheme is that all the particles have the same shape and, therefore, the average temperature gradient in a particle coincides with the remotely applied. We specified the expression for overall conductivity for different cases of particles shape and orientation distributions. The accuracy of the approach is verified on experimental and computational data available in literature.</description><subject>Aggregates</subject><subject>Anisotropy</subject><subject>Conductivity</subject><subject>Effective conductivity</subject><subject>Electrical resistivity</subject><subject>Heat conductivity</subject><subject>Polycrystal</subject><subject>Polycrystals</subject><subject>Temperature gradients</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtu2zAQhomgAeI6uUJAIGspQ0omrV0Ko48gAbJp1wRFjWwKsqgOaQO-WC-Qi4WG23VXM4P5_3l8jN0LKAUI9TiUfsBpG50vJYimBFkCiCu2EGvdFFI0-hNbAEgotJSrG_Y5xgEAVlXTLFh8ofc_ExLfY9qFjveBeNoh7e3Ic4ojukTe5cqFqTu45I8-nXjo-RzGk6NTTHaM3E4dD2cft9st4dYmjGeRnXwMicLsHZ8tJe9GjLfsus8mvPsbl-zXt68_Nz-K17fvz5svr4WrakhFr9dOdLjKp4KoNfR1tVZCtVXV2txw0jqtpJRd2whVt10NqnGIai2VXOlWVEv2cJk7U_h9wJjMEA405ZVGSqGk1hlCVqmLylGIkbA3M_m9pZMRYM6AzWD-ATZnwAakyYCz8elixPzD0SOZrMDJYecpUzNd8P8b8QH2MYpS</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Sevostianov, Igor</creator><creator>Talipov, Marat R.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201903</creationdate><title>Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles</title><author>Sevostianov, Igor ; Talipov, Marat R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-f78c1de500501470f438616b33bac1dc2ac76222db9164bd4069cee6826257b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Anisotropy</topic><topic>Conductivity</topic><topic>Effective conductivity</topic><topic>Electrical resistivity</topic><topic>Heat conductivity</topic><topic>Polycrystal</topic><topic>Polycrystals</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevostianov, Igor</creatorcontrib><creatorcontrib>Talipov, Marat R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevostianov, Igor</au><au>Talipov, Marat R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles</atitle><jtitle>International journal of engineering science</jtitle><date>2019-03</date><risdate>2019</risdate><volume>136</volume><spage>67</spage><epage>77</epage><pages>67-77</pages><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>We reformulated the self-consistent Kröner scheme to calculate thermal conductivities of aggregates of anisotropic particles, including polycrystals. The only assumption of this scheme is that all the particles have the same shape and, therefore, the average temperature gradient in a particle coincides with the remotely applied. We specified the expression for overall conductivity for different cases of particles shape and orientation distributions. The accuracy of the approach is verified on experimental and computational data available in literature.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2019.02.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2019-03, Vol.136, p.67-77
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_journals_2216277053
source Access via ScienceDirect (Elsevier)
subjects Aggregates
Anisotropy
Conductivity
Effective conductivity
Electrical resistivity
Heat conductivity
Polycrystal
Polycrystals
Temperature gradients
title Kröner method for thermal or electrical conductivity of polycrystals and other aggregates of anisotropic particles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kr%C3%B6ner%20method%20for%20thermal%20or%20electrical%20conductivity%20of%20polycrystals%20and%20other%20aggregates%20of%20anisotropic%20particles&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Sevostianov,%20Igor&rft.date=2019-03&rft.volume=136&rft.spage=67&rft.epage=77&rft.pages=67-77&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2019.02.001&rft_dat=%3Cproquest_cross%3E2216277053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216277053&rft_id=info:pmid/&rft_els_id=S0020722519301272&rfr_iscdi=true