Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries

An in-situ formed neuron-like Si-CNT composite is realized with a modified chemical vapor deposition method, in which Ni(CH3COO)2 and quinolinic acid serve as catalyst and the carbon source, respectively. Under Ar/H2 gas-flow at 900 °C, Ni(CH3COO)2 is reduced to nickel nanoparticles and quinolinic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-05, Vol.787, p.928-934
Hauptverfasser: Zhu, Guobin, Gu, Yuanyuan, Wang, Yan, Qu, Qunting, Zheng, Honghe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 934
container_issue
container_start_page 928
container_title Journal of alloys and compounds
container_volume 787
creator Zhu, Guobin
Gu, Yuanyuan
Wang, Yan
Qu, Qunting
Zheng, Honghe
description An in-situ formed neuron-like Si-CNT composite is realized with a modified chemical vapor deposition method, in which Ni(CH3COO)2 and quinolinic acid serve as catalyst and the carbon source, respectively. Under Ar/H2 gas-flow at 900 °C, Ni(CH3COO)2 is reduced to nickel nanoparticles and quinolinic acid is decomposed into carbon fragments. Under the catalysis of the nickel nanoparticles, carbon nanotubes are generated in between the silicon particles via recombination of the carbon fragments. The neuron-like Si-CNT composite not only contributes to a high electronic conductivity and mechanical stability of the silicon anode, but also effectively offsets the large volume change of the Si particles. The rate capability and cycling stability of the Si anode are significantly enhanced compared to that of the physical Si + CNT mixture. At an extremely high current density of 20 A g−1, the neuron-like Si-CNT composite still delivers a reversible capacity of 1161.5 mAh g−1. After 200 cycles, the capacity retention is obtained to as high as 96%, showing a great potential for practical application in advanced lithium ion battery industries. •Neuron like carbon nanotubes (CNTs) are grown on silicon nanoparticles.•A chemical vapor deposition method is used to prepare the Si-CNTs composite.•The capacity retention of Si-CNTs after 200 cycles of Li-storage is 96%.•The Si-CNTs composite exhibits improved conductivity and mechanical strength.
doi_str_mv 10.1016/j.jallcom.2019.02.186
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2216267094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819306425</els_id><sourcerecordid>2216267094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-f785a4f2211bc0c7b0c541ada9caef255796f22838814dbc3382ccd770a8c1f33</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YNGDiseQplM3tdusSSr4703ZvXsahnnfd2YehC4pySmh1XWf93oYjNvmjNA6JyynsjpCCyoFz4qqqo_RgtSszCSX8hSdhdATkpScLtDHM0zejXiwX4BfbWa0b1I76tHFqYGAU-zOBRsB64A13tjPTeb13I6uBey6ZI0bO22xTb5GxwjeQjhHJ50eAlwc6hK939-9rR6z9cvD0-p2nRkuqph1Qpa66BijtDHEiIaYsqC61bXR0LGyFHWVpvPhtGgbw7lkxrRCEC0N7Thfoqt97s677wlCVL2b_JhWqhRasUqQukiqcq8y3oXgoVM7b7fa_ypK1MxQ9erAUM0MFWEqMUy-m70P0gs_FrwKxsJooLUeTFSts_8k_AFxq31c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216267094</pqid></control><display><type>article</type><title>Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries</title><source>Elsevier ScienceDirect Journals</source><creator>Zhu, Guobin ; Gu, Yuanyuan ; Wang, Yan ; Qu, Qunting ; Zheng, Honghe</creator><creatorcontrib>Zhu, Guobin ; Gu, Yuanyuan ; Wang, Yan ; Qu, Qunting ; Zheng, Honghe</creatorcontrib><description>An in-situ formed neuron-like Si-CNT composite is realized with a modified chemical vapor deposition method, in which Ni(CH3COO)2 and quinolinic acid serve as catalyst and the carbon source, respectively. Under Ar/H2 gas-flow at 900 °C, Ni(CH3COO)2 is reduced to nickel nanoparticles and quinolinic acid is decomposed into carbon fragments. Under the catalysis of the nickel nanoparticles, carbon nanotubes are generated in between the silicon particles via recombination of the carbon fragments. The neuron-like Si-CNT composite not only contributes to a high electronic conductivity and mechanical stability of the silicon anode, but also effectively offsets the large volume change of the Si particles. The rate capability and cycling stability of the Si anode are significantly enhanced compared to that of the physical Si + CNT mixture. At an extremely high current density of 20 A g−1, the neuron-like Si-CNT composite still delivers a reversible capacity of 1161.5 mAh g−1. After 200 cycles, the capacity retention is obtained to as high as 96%, showing a great potential for practical application in advanced lithium ion battery industries. •Neuron like carbon nanotubes (CNTs) are grown on silicon nanoparticles.•A chemical vapor deposition method is used to prepare the Si-CNTs composite.•The capacity retention of Si-CNTs after 200 cycles of Li-storage is 96%.•The Si-CNTs composite exhibits improved conductivity and mechanical strength.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.02.186</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Anode effect ; Carbon ; Carbon nanotubes ; Catalysis ; Chemical vapor deposition ; Chemical vapor deposition (CVD) ; Fragments ; Lithium ; Lithium ion batteries ; Nanoparticles ; Neuron composite ; Nickel ; Offsets ; Organic chemistry ; Rechargeable batteries ; Silicon ; Silicon anode ; Stability</subject><ispartof>Journal of alloys and compounds, 2019-05, Vol.787, p.928-934</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 30, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-f785a4f2211bc0c7b0c541ada9caef255796f22838814dbc3382ccd770a8c1f33</citedby><cites>FETCH-LOGICAL-c376t-f785a4f2211bc0c7b0c541ada9caef255796f22838814dbc3382ccd770a8c1f33</cites><orcidid>0000-0002-2277-7115 ; 0000-0002-1475-3359 ; 0000-0003-2590-2695 ; 0000-0001-9115-0669</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838819306425$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Zhu, Guobin</creatorcontrib><creatorcontrib>Gu, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Qu, Qunting</creatorcontrib><creatorcontrib>Zheng, Honghe</creatorcontrib><title>Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries</title><title>Journal of alloys and compounds</title><description>An in-situ formed neuron-like Si-CNT composite is realized with a modified chemical vapor deposition method, in which Ni(CH3COO)2 and quinolinic acid serve as catalyst and the carbon source, respectively. Under Ar/H2 gas-flow at 900 °C, Ni(CH3COO)2 is reduced to nickel nanoparticles and quinolinic acid is decomposed into carbon fragments. Under the catalysis of the nickel nanoparticles, carbon nanotubes are generated in between the silicon particles via recombination of the carbon fragments. The neuron-like Si-CNT composite not only contributes to a high electronic conductivity and mechanical stability of the silicon anode, but also effectively offsets the large volume change of the Si particles. The rate capability and cycling stability of the Si anode are significantly enhanced compared to that of the physical Si + CNT mixture. At an extremely high current density of 20 A g−1, the neuron-like Si-CNT composite still delivers a reversible capacity of 1161.5 mAh g−1. After 200 cycles, the capacity retention is obtained to as high as 96%, showing a great potential for practical application in advanced lithium ion battery industries. •Neuron like carbon nanotubes (CNTs) are grown on silicon nanoparticles.•A chemical vapor deposition method is used to prepare the Si-CNTs composite.•The capacity retention of Si-CNTs after 200 cycles of Li-storage is 96%.•The Si-CNTs composite exhibits improved conductivity and mechanical strength.</description><subject>Anode effect</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Catalysis</subject><subject>Chemical vapor deposition</subject><subject>Chemical vapor deposition (CVD)</subject><subject>Fragments</subject><subject>Lithium</subject><subject>Lithium ion batteries</subject><subject>Nanoparticles</subject><subject>Neuron composite</subject><subject>Nickel</subject><subject>Offsets</subject><subject>Organic chemistry</subject><subject>Rechargeable batteries</subject><subject>Silicon</subject><subject>Silicon anode</subject><subject>Stability</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguTUfbZOeRBa_YNGDiseQplM3tdusSSr4703ZvXsahnnfd2YehC4pySmh1XWf93oYjNvmjNA6JyynsjpCCyoFz4qqqo_RgtSszCSX8hSdhdATkpScLtDHM0zejXiwX4BfbWa0b1I76tHFqYGAU-zOBRsB64A13tjPTeb13I6uBey6ZI0bO22xTb5GxwjeQjhHJ50eAlwc6hK939-9rR6z9cvD0-p2nRkuqph1Qpa66BijtDHEiIaYsqC61bXR0LGyFHWVpvPhtGgbw7lkxrRCEC0N7Thfoqt97s677wlCVL2b_JhWqhRasUqQukiqcq8y3oXgoVM7b7fa_ypK1MxQ9erAUM0MFWEqMUy-m70P0gs_FrwKxsJooLUeTFSts_8k_AFxq31c</recordid><startdate>20190530</startdate><enddate>20190530</enddate><creator>Zhu, Guobin</creator><creator>Gu, Yuanyuan</creator><creator>Wang, Yan</creator><creator>Qu, Qunting</creator><creator>Zheng, Honghe</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-2277-7115</orcidid><orcidid>https://orcid.org/0000-0002-1475-3359</orcidid><orcidid>https://orcid.org/0000-0003-2590-2695</orcidid><orcidid>https://orcid.org/0000-0001-9115-0669</orcidid></search><sort><creationdate>20190530</creationdate><title>Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries</title><author>Zhu, Guobin ; Gu, Yuanyuan ; Wang, Yan ; Qu, Qunting ; Zheng, Honghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-f785a4f2211bc0c7b0c541ada9caef255796f22838814dbc3382ccd770a8c1f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anode effect</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Catalysis</topic><topic>Chemical vapor deposition</topic><topic>Chemical vapor deposition (CVD)</topic><topic>Fragments</topic><topic>Lithium</topic><topic>Lithium ion batteries</topic><topic>Nanoparticles</topic><topic>Neuron composite</topic><topic>Nickel</topic><topic>Offsets</topic><topic>Organic chemistry</topic><topic>Rechargeable batteries</topic><topic>Silicon</topic><topic>Silicon anode</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Guobin</creatorcontrib><creatorcontrib>Gu, Yuanyuan</creatorcontrib><creatorcontrib>Wang, Yan</creatorcontrib><creatorcontrib>Qu, Qunting</creatorcontrib><creatorcontrib>Zheng, Honghe</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Guobin</au><au>Gu, Yuanyuan</au><au>Wang, Yan</au><au>Qu, Qunting</au><au>Zheng, Honghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-05-30</date><risdate>2019</risdate><volume>787</volume><spage>928</spage><epage>934</epage><pages>928-934</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>An in-situ formed neuron-like Si-CNT composite is realized with a modified chemical vapor deposition method, in which Ni(CH3COO)2 and quinolinic acid serve as catalyst and the carbon source, respectively. Under Ar/H2 gas-flow at 900 °C, Ni(CH3COO)2 is reduced to nickel nanoparticles and quinolinic acid is decomposed into carbon fragments. Under the catalysis of the nickel nanoparticles, carbon nanotubes are generated in between the silicon particles via recombination of the carbon fragments. The neuron-like Si-CNT composite not only contributes to a high electronic conductivity and mechanical stability of the silicon anode, but also effectively offsets the large volume change of the Si particles. The rate capability and cycling stability of the Si anode are significantly enhanced compared to that of the physical Si + CNT mixture. At an extremely high current density of 20 A g−1, the neuron-like Si-CNT composite still delivers a reversible capacity of 1161.5 mAh g−1. After 200 cycles, the capacity retention is obtained to as high as 96%, showing a great potential for practical application in advanced lithium ion battery industries. •Neuron like carbon nanotubes (CNTs) are grown on silicon nanoparticles.•A chemical vapor deposition method is used to prepare the Si-CNTs composite.•The capacity retention of Si-CNTs after 200 cycles of Li-storage is 96%.•The Si-CNTs composite exhibits improved conductivity and mechanical strength.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.02.186</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2277-7115</orcidid><orcidid>https://orcid.org/0000-0002-1475-3359</orcidid><orcidid>https://orcid.org/0000-0003-2590-2695</orcidid><orcidid>https://orcid.org/0000-0001-9115-0669</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-05, Vol.787, p.928-934
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2216267094
source Elsevier ScienceDirect Journals
subjects Anode effect
Carbon
Carbon nanotubes
Catalysis
Chemical vapor deposition
Chemical vapor deposition (CVD)
Fragments
Lithium
Lithium ion batteries
Nanoparticles
Neuron composite
Nickel
Offsets
Organic chemistry
Rechargeable batteries
Silicon
Silicon anode
Stability
title Neuron like Si-carbon nanotubes composite as a high-rate anode of lithium ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T06%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuron%20like%20Si-carbon%20nanotubes%20composite%20as%20a%20high-rate%20anode%20of%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zhu,%20Guobin&rft.date=2019-05-30&rft.volume=787&rft.spage=928&rft.epage=934&rft.pages=928-934&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.02.186&rft_dat=%3Cproquest_cross%3E2216267094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216267094&rft_id=info:pmid/&rft_els_id=S0925838819306425&rfr_iscdi=true