Accurate predictions of lithium-ion battery life
[...]methods for assessing battery health are becoming increasingly important. [...]the models did not involve slow test cycles, or require any assumptions to be made about the chemistry and degradation mechanisms occurring in the batteries, which had been the case in previously reported studies tha...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2019-04, Vol.568 (7752), p.325-326 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 326 |
---|---|
container_issue | 7752 |
container_start_page | 325 |
container_title | Nature (London) |
container_volume | 568 |
creator | Berecibar, Maitane |
description | [...]methods for assessing battery health are becoming increasingly important. [...]the models did not involve slow test cycles, or require any assumptions to be made about the chemistry and degradation mechanisms occurring in the batteries, which had been the case in previously reported studies that used machine learning6. [...]their approach for predicting cycle life complements all previously used approaches. |
doi_str_mv | 10.1038/d41586-019-01138-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2216253957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2216253957</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-a2c7e1e99c542f132e013a17a1de56e5da8415f026f79a0f6a8082f0218519983</originalsourceid><addsrcrecordid>eNotjk9LxDAUxIMoWFe_gKeC5-h7-ftyXBZ1hQUvel5i-4Jd1m1t0oPf3oAehmHmML8R4hbhHkHTQ2_QkpOAoQo1STwTDRrvpHHkz0UDoEgCaXcprnI-AIBFbxoB665b5li4nWbuh64M4ym3Y2qPQ_kcli9Zc_sRS-H5p3aJr8VFisfMN_--Eu9Pj2-brdy9Pr9s1js5VX6RUXWekUPorFEJtWJAHdFH7Nk6tn2kejmBcsmHCMlFAlI1I1kMgfRK3P3tTvP4vXAu-8O4zKeK3CuFTlkdrNe_9OpFAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2216253957</pqid></control><display><type>article</type><title>Accurate predictions of lithium-ion battery life</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Berecibar, Maitane</creator><creatorcontrib>Berecibar, Maitane</creatorcontrib><description>[...]methods for assessing battery health are becoming increasingly important. [...]the models did not involve slow test cycles, or require any assumptions to be made about the chemistry and degradation mechanisms occurring in the batteries, which had been the case in previously reported studies that used machine learning6. [...]their approach for predicting cycle life complements all previously used approaches.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/d41586-019-01138-1</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Alternative energy sources ; Artificial intelligence ; Batteries ; Electric vehicles ; Electricity ; Energy consumption ; Life prediction ; Lifetime ; Lithium ; Lithium-ion batteries ; Organic chemistry ; Rechargeable batteries ; Renewable resources</subject><ispartof>Nature (London), 2019-04, Vol.568 (7752), p.325-326</ispartof><rights>Copyright Nature Publishing Group Apr 18, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Berecibar, Maitane</creatorcontrib><title>Accurate predictions of lithium-ion battery life</title><title>Nature (London)</title><description>[...]methods for assessing battery health are becoming increasingly important. [...]the models did not involve slow test cycles, or require any assumptions to be made about the chemistry and degradation mechanisms occurring in the batteries, which had been the case in previously reported studies that used machine learning6. [...]their approach for predicting cycle life complements all previously used approaches.</description><subject>Alternative energy sources</subject><subject>Artificial intelligence</subject><subject>Batteries</subject><subject>Electric vehicles</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Life prediction</subject><subject>Lifetime</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Organic chemistry</subject><subject>Rechargeable batteries</subject><subject>Renewable resources</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotjk9LxDAUxIMoWFe_gKeC5-h7-ftyXBZ1hQUvel5i-4Jd1m1t0oPf3oAehmHmML8R4hbhHkHTQ2_QkpOAoQo1STwTDRrvpHHkz0UDoEgCaXcprnI-AIBFbxoB665b5li4nWbuh64M4ym3Y2qPQ_kcli9Zc_sRS-H5p3aJr8VFisfMN_--Eu9Pj2-brdy9Pr9s1js5VX6RUXWekUPorFEJtWJAHdFH7Nk6tn2kejmBcsmHCMlFAlI1I1kMgfRK3P3tTvP4vXAu-8O4zKeK3CuFTlkdrNe_9OpFAw</recordid><startdate>20190418</startdate><enddate>20190418</enddate><creator>Berecibar, Maitane</creator><general>Nature Publishing Group</general><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>20190418</creationdate><title>Accurate predictions of lithium-ion battery life</title><author>Berecibar, Maitane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-a2c7e1e99c542f132e013a17a1de56e5da8415f026f79a0f6a8082f0218519983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Artificial intelligence</topic><topic>Batteries</topic><topic>Electric vehicles</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Life prediction</topic><topic>Lifetime</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Organic chemistry</topic><topic>Rechargeable batteries</topic><topic>Renewable resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berecibar, Maitane</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berecibar, Maitane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate predictions of lithium-ion battery life</atitle><jtitle>Nature (London)</jtitle><date>2019-04-18</date><risdate>2019</risdate><volume>568</volume><issue>7752</issue><spage>325</spage><epage>326</epage><pages>325-326</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>[...]methods for assessing battery health are becoming increasingly important. [...]the models did not involve slow test cycles, or require any assumptions to be made about the chemistry and degradation mechanisms occurring in the batteries, which had been the case in previously reported studies that used machine learning6. [...]their approach for predicting cycle life complements all previously used approaches.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/d41586-019-01138-1</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2019-04, Vol.568 (7752), p.325-326 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_journals_2216253957 |
source | Nature; Springer Nature - Complete Springer Journals |
subjects | Alternative energy sources Artificial intelligence Batteries Electric vehicles Electricity Energy consumption Life prediction Lifetime Lithium Lithium-ion batteries Organic chemistry Rechargeable batteries Renewable resources |
title | Accurate predictions of lithium-ion battery life |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T12%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20predictions%20of%20lithium-ion%20battery%20life&rft.jtitle=Nature%20(London)&rft.au=Berecibar,%20Maitane&rft.date=2019-04-18&rft.volume=568&rft.issue=7752&rft.spage=325&rft.epage=326&rft.pages=325-326&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/d41586-019-01138-1&rft_dat=%3Cproquest%3E2216253957%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2216253957&rft_id=info:pmid/&rfr_iscdi=true |