Using Neural Networks to Predict Treatment Process Performance

This article discusses the application of a simple artificial neural network (ANN) model to predict microfiltration/ultrafiltration (MF/UF) performance with reasonable accuracy using data typically gathered online in an MF/UF facility. By developing a site‐specific ANN model, operators of MF/UF faci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal - American Water Works Association 2010-04, Vol.102 (4), p.38-44
Hauptverfasser: Veerapaneni, Srinivas (Vasu), Budd, George, Bond, Rick, Horsley, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article discusses the application of a simple artificial neural network (ANN) model to predict microfiltration/ultrafiltration (MF/UF) performance with reasonable accuracy using data typically gathered online in an MF/UF facility. By developing a site‐specific ANN model, operators of MF/UF facilities could predict the performance of critical parameters such as transmembrane pressure (TMP) and plan accordingly. For instance, when the model predicts a higher rate of fouling based on feedwater quality, operating conditions could be modified to reduce the rate of increase of TMP, thereby reducing the required cleaning frequency of MF/UF systems.
ISSN:0003-150X
1551-8833
DOI:10.1002/j.1551-8833.2010.tb10083.x